\qquad
\qquad SYSTEMS OF EQUATIONS REVIEW

Essential Standard (8.EE.C.8.A): Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.

1-4: Solve by graphing. (hint: find m and b of each line first)

1. $\left\{\begin{array}{l}y=x-3 \\ y=-x+1\end{array}\right.$
2. $\left\{\begin{array}{l}y=-4-\frac{2}{3} x \\ y=2 x+4\end{array}\right.$
3. $\left\{\begin{array}{l}y=x-2 \\ y=-\frac{1}{3} x+2\end{array}\right.$
4. $\left\{\begin{array}{l}y=-3 x-1 \\ y=2-3 x\end{array}\right.$

5. When two lines have the same slope and different y-intercepts, there is \qquad solution.
6. When two lines have different slopes, there is \qquad solution.
7. When two lines have the same slope and the same y-intercept, there is \qquad solution.
8. If you were given the equation, $y=4 x-6$, write an equation that would provide you with the following answers.

One Solution: \qquad No Solution: \qquad Infinite Solutions: \qquad
9. The ordered pair $(8,5)$ is the solution to which system of equations? Circle all that apply. (Show work)

\qquad
\qquad
10. Which of the following has no solution? \qquad Infinite solutions? \qquad Explain how you know.
Graph A

Graph B

Graph C

11. Find the solution for the graph that you did NOT use in $\# 10$. \qquad

Essential Standard (8.EE.C.8.B): Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection.
12. Solve by substitution or set equal.
a. $\left\{\begin{array}{l}y=5 x-11 \\ y=-2 x+10\end{array}\right.$
b. $\left\{\begin{array}{l}y=-3 x+17 \\ y=4 x-18\end{array}\right.$
c. $\left\{\begin{array}{l}y=-3 x+6 \\ 2 x-3 y=4\end{array}\right.$
d. $\left\{\begin{array}{l}x=-18-7 y \\ 4 x+7 y=-30\end{array}\right.$
\qquad
e. $\left\{\begin{array}{l}-6 x+2 y=4 \\ -3 x+y=2\end{array}\right.$
f. $\left\{\begin{array}{l}x+5 y=4 \\ 3 x+15 y=-1\end{array}\right.$

g. $\left\{\begin{array}{l}8 x+2 y=13 \\ 4 x+y=11\end{array}\right.$
h. $\left\{\begin{array}{l}4 x+3 y=8 \\ x-2 y=13\end{array}\right.$

Essential Standard (8.EE.C.8.C): Solve real-world and mathematical problems leading to two linear equations in two variables.

13-16: Use the following graph which shows the cost and income of Choir Fundraiser.

13. How much is the setup fee for the cost? \qquad How do you know? \qquad
14. What is the break-even point? \qquad
What is the cost and income at this point? \qquad
What is the profit at this point? \qquad
15. Determine the number of shirts for which the cost is greater than the income.
16. State the number of shirts that must be sold for a profit to be made \qquad
\qquad
\qquad
Essential Standard (8.EE.C.8.C): Solve real-world and mathematical problems leading to two linear equations in two variables.

17-20: Jenny was selling Girl Scout Cookies. She sold 14 boxes for a total of $\$ 60$. Shortbreads (x) sell for $\$ 4.00$ each and Thin Mints (y) sell for $\$ 5.00$ each. How many boxes of each did she sell?
17. Write 2 equations to represent this situation.

Equation for number of boxes: \qquad
Equation for cost: \qquad
18. Write both equations in slope- intercept form and graph Equation 1: \qquad
Equation 2: \qquad
19. Solve using substitution.

Answer:

20. The ordered pair (\qquad , \qquad) is the solution. What does it represent?

Answers:

1) $(2,-1) 2)(-3,-2) 3)(3,1)$ 4) No solution 5) no 6) one 7) infinite 8) Answers may vary
2) (a) (b) (e) 10) A, C 11) (1,-2) 12) a. (3,4) b. (5,2) c. (2,0) d. (-4,-2) e. Inf solutions f. no solution g. no solution h. (5,-4)
3) $\$ 30$, this is the y-intercept 14) $(6,60), \$ 60, \$ 015) 0-5$ shirts
4) More than 6 shirts 17) $x+y=14,4 x+5 y=60$ 18) $y=-x+14, y=-4 / 5 x+12$
5) (10,4) 20) Jenny sold 10 boxes of Shortbreads and 4 boxes of Thin Mints
