$\qquad$
SYSTEMS OF EQUATIONS REVIEW

## 1-4: Solve by graphing. (hint: find $m$ and $b$ of each line first)

1. $\left\{\begin{array}{l}y=x-3 \\ y=-x+1\end{array}\right.$
2. $\left\{\begin{array}{l}y=-4-\frac{2}{3} x \\ y=2 x+4\end{array}\right.$
3. $\left\{\begin{array}{l}y=x-2 \\ y=-\frac{1}{3} x+2\end{array}\right.$
4. $\left\{\begin{array}{l}y=-3 x-1 \\ y=2-3 x\end{array}\right.$




$(2,-1)$
$(-3,-2)$

No solution
5. When two lines have the same slope and different $y$ - intercepts, there is $\qquad$ solution.
6. When two lines have different slopes, there is $\qquad$ solution.
7. When two lines have the same slope and the same $y$ - intercept, there is $\qquad$ solutions.
8. If you were given the equation, $y=4 x-6$, write an equation that would provide you with the following answers.

One Solution: $y=3 x+2 \quad$ No Solution: $y=4 x+1 \quad$ Infinite Solutions: $y=4 x-6$
9. The ordered pair $(8,5)$ is the solution to which system of equations? Circle all that apply. (Show work)


Name $\qquad$ Per ABCDEFDate $\qquad$
10. Which of the following has no solution? $\qquad$ Infinite solutions? $\qquad$ Explain how you know.

Graph A

parallel lines
Graph B


Graph C

11. Find the solution for the graph that you did NOT use in \#10. $\qquad$
12. Solve by substitution or set equal.
a. $\left\{\begin{array}{l}y=5 x-11 \\ y=-2 x+10\end{array}\right.$

$$
\begin{array}{rlrl}
5 x-11 & =-2 x+10 & & \text { Back sub } \\
+2 x & & \\
7 x-11 & =10 & & y=5(3)-11 \\
+11 & +11 & & y=15-11 \\
7 x & =21 & & y=4 \\
x & =3 & &
\end{array}
$$

b. $\left\{\begin{array}{l}y=-3 x+17 \\ y=4 x-18\end{array}\right.$

$$
\begin{aligned}
& \begin{array}{lll}
-3 x+17= & 4 x-18 \\
+3 x & +3 x & y=4(5)-18
\end{array} \\
& 17=7 x-18 \quad y=20-18 \\
& +18 \quad+18 \\
& 35=7 x \\
& 5=x
\end{aligned}
$$

$$
(3,4)
$$

$$
\begin{aligned}
& \text { c. }\left\{\begin{array}{l}
y=-3 x+6 \\
2 x-3 \boxtimes=4
\end{array}\right. \\
& 2 x-3(-3 x+6)=4 \\
& 2 x+9 x-18=4 \\
& 11 x-18=4 \\
& 11 x=22 \\
& x=2 \\
& \text { c. }\left\{\begin{array}{l}
y=-3 x+6 \\
2 x-3 \mathbb{y}=4
\end{array}\right.
\end{aligned}
$$

Back Sub

$$
\begin{aligned}
& y=-3(2)+6 \\
& y=-6+6 \\
& y=0
\end{aligned}
$$

d. $\left\{\begin{array}{l}\bar{x}=-18-7 y \\ 4 \sqrt{x}+7 y=-30\end{array}\right.$

$$
\begin{aligned}
& 4(-18-7 y)+7 y=-30 \\
& -72-28 y+7 y=-30 \\
& -72-21 y=-30 \quad \text { Back Sub } \\
& +72 \quad x=-18-7(-2) \\
& -21 y=42 \\
& y=-2
\end{aligned} \quad x=-18+14+14 .
$$

$(5,2)$

$-6 x+2(3 x+2)=4$
$-6 x+6 x+4=4$

$$
4=4
$$

f. $\left\{\begin{array}{l}x+5 y=4 \rightarrow x=-5 y+4 \\ 3 \times 15 y=-1\end{array}\right.$
$3(-5 y+4)+15 y=-1$
$-18 y+12+15 y=-1$
$12 \neq-1$

Infinite

$$
\begin{aligned}
& \text { g. }\left\{\begin{array}{l}
8 x+2 \sqrt{y}=13 \\
4 x+y=11 \rightarrow 4
\end{array}\right\}-4 x+11 \\
& 8 x+2(-4 x+11)=13 \\
& 8 x-8 x+22=13 \\
& 22 \neq 13 \\
& \text { No solution } \\
& \text { g. }\left\{\begin{array}{l}
8 x+2 y=13 \\
4 x+y=11 \rightarrow y=-4 x+11
\end{array}\right. \\
& \text { solutions } \\
& 4(2 y+13)+3 y=8 \\
& \frac{\text { Backs sb }}{x=2 y^{+13}} \\
& 8 y+52+3 y=8 \quad \begin{array}{l}
x=2 y+13 \\
x=2(-4)+13
\end{array} \\
& 11 y+52=8 \quad x=-8+13 \\
& 11 y=-44 \quad x=5 \\
& y=-4 \\
& (5,-4)
\end{aligned}
$$

13-16: Use the following graph which shows the cost and income of Choir Fundraiser.

Choir T-Shirts Fundraiser

13. How much is the setup fee for the cost? \$30 How do yo know The Cost
starts at $(0,30)$.
14. What is the berakeceren point? $(6,60)$ What is the cost and income at this point? \$60,\$60 What is the profit at this point? $\qquad$
15. Determine the number of shirts for which the cost is greater than the income.

$$
\begin{aligned}
& \text { r than the income } \\
& \text { Less } \\
& \text { than } \\
& \text { shirts }(0-5)
\end{aligned}
$$

16. State the number of shirts that must be sold for a profit to be made $\qquad$
$\qquad$ Per ABCDEF Date $\qquad$
17-20: Jenny was selling Girl Scout Cookies. She sold 14 boxes for a total of $\$ 60$. Shortbreads ( $\mathbf{x}$ ) sell for $\$ 4.00$ each and Thin Mints (y) sell for $\$ 5.00$ each. How many boxes of each did she sell?
$x=\#$ of shortbreads boxes
17. Write 2 equations to represent this situation.

Equation for number of boxes: $\qquad$ $x+y=14$
Equation for cost: $\qquad$ $4 x+5 y=60$

$$
5 y=-4 x+60
$$

18. Write both equations in slope- intercept form and graph

Equation 1: $\qquad$
Equation 2: $\quad y=-\frac{4}{5} x+12$
19. Solve using substitution.



Back Sub

$$
\begin{aligned}
& y=-x+14 \\
& y=-(10)+14 \\
& y=4
\end{aligned}
$$

20. The ordered pair ( $(\underline{0}, \underline{4})$ is the solution. What does it represent?

Jenny sold 10 boxes of shortbreads and 4 boxes of Thin Mints.

Answers:

1) $(2,-1)$ 2) $(-3,-2) 3)(3,1)$ 4) No solution 5) no 6) one 7) infinite 8) Answers may vary
2) (a) (b) (e) 10) A, C 11) (1,-2) 12) a. $(3,4)$ b. $(5,2)$ c. $(2,0)$ d. $(-4,-2)$ e. Inf solutions f. no solution g. no solution $h .(5,-4)$
3) $\$ 30$, this is the y-intercept 14$)(6,60), \$ 60, \$ 015) 0-5$ shirts
4) More than 6 shirts 17) $x+y=14,4 x+5 y=60$ 18) $y=-x+14, y=-4 / 5 x+12$
5) $(10,4) \mathbf{2 0})$ Jenny sold 10 boxes of Shortbread and 4 boxes of Thin Mints
