NAME: \qquad
\qquad DATE: \qquad
Homework Problem Set

1. Consider the inequality $0<x<3$.
A. Rewrite the inequality as a compound sentence and in interval notation.

$$
\begin{aligned}
& x>0 \text { and } x<3 \\
& (0,3)
\end{aligned}
$$

B. Graph the inequality on a number line.

C. How many solutions are there to the inequality? Explain.

Infinite number of solutions between O and 3
D. What are the largest and smallest possible values for x ? Explain.

None $\rightarrow x$ can be infinitely close to 0 or to 3, but cannot equal either value.
E. If the inequality is changed to $0 \leq x \leq 3$, then what are the largest and smallest possible values for x ?

Smallest value: 0 largest value: 3

Write a compound inequality for each graph. Then write it in interval notation.
2.

3.

$x \neq 2$

$$
(-\infty, 2) \text { or }(2, \infty)
$$

Write a single or compound inequality for each scenario. Then write it in interval notation.
4. The scores on the last test ranged from 65% to 100%.

$$
\begin{aligned}
& 65 \leq x \leq 100 \\
& {[65,100]}
\end{aligned}
$$

5. To ride the roller coaster, one must be at least 4 feet tall.

$$
\begin{gathered}
x \geq 4 \\
{[4, \infty)}
\end{gathered}
$$

6. Unsafe body temperatures are those lower than $96^{\circ} \mathrm{F}$ or above $104^{\circ} \mathrm{F}$.

$$
\begin{aligned}
& x<96 \text { or } x>104 \\
& (-\infty, 96) \text { or }(104, \infty)
\end{aligned}
$$

Graph the solutions) to each of the following on a number line.
7. $x \leq-8$ or $x \geq-1$

9. $x<9$ and $x>7$

8. $3(x-6)=3$ or $5-x \neq 2$

$$
\begin{array}{ll}
3 x-18=3 & 5-x \neq 2 \\
3 x=21 & -x \neq-3 \\
x=7 & x \neq 3
\end{array}
$$

10. $x+5<7$ or $x=2$
$x<2$ or $x=2$

11. $x-4=0$ and $3 x+6=18$ $x=4 \quad x=4$

12. $x<5$ and $x \neq 0$

Solve each compound inequality for x, and graph the solution on a number line. Then write the solution in interval notation.
13. $x+6<8$ and $x-1>-1$

$$
x<2 \text { and } x>0
$$

$0<x<2$
$(0,2)$

15. $5 x+1<0$ or $8 \leq x-5$

$x<-\frac{1}{5}$ or $x \geq 13$

14. $-1 \leq 3-2 x \leq 10$
$-3-3 \quad-3$
$\frac{-4}{-2} \leq \frac{-2 x}{-2} \leq \frac{7}{-2}$

$$
2 \geq x \geq-\frac{7}{2} \rightarrow \frac{-7}{2} \leq x \leq 2 \quad\left[-\frac{7}{2}, 2\right]
$$

16. $10>^{2} 3 x-2$ or $x=4$

$$
12>3 x
$$

$$
\begin{aligned}
& 4>x \text { or } x \neq 4 \\
& x<4 \text { or }
\end{aligned}
$$

$(-\infty, 4)$

Solve each compound inequality for x, and graph the solution on a number line.
17. $x-2<4$ or $x-2>4$

18. $x-2 \leq 4$ and $x-2 \geq 4$
$x \leq 6 \frac{\text { and }}{\text { so }} x \geq 6$

$$
x=6
$$

Solve each compound inequality for x, and graph the solution on a number line. Pay careful attention to the inequality symbols and the "and" or "or" statements as you work.
19. $1+x>-4$ or $3 x-6>-12$

$$
\begin{gathered}
x>-5 \text { or } 3 x>-6 \\
x>-5 \text { or } x>-2 \\
\text { II } \\
\text { so } \\
x>-5
\end{gathered}
$$

20. $1+x>-4$ or $3 x-6<-12$
$x>-5$ or $x<-2$ リ. So
ALL REAL Numbers

21. $1+x>4$ and $3 x-6<-12$
$x>3$ and $x<-2$ No solution or Empty Set
〔NO\#s -2
will satisfy both
statements.
22. A. Solve the inequality $4 x+8>2 x-10$ or $\frac{1}{3} x-3<2$ for x, and graph the solution on a number line.
B. If the inequalities in Part A were joined by "and" instead of "or," what would the solution set become?
23. A. Solve the inequality $7-3 x<16$ and $x+12<-8$ for x, and graph the solution on a number line.
B. If the inequalities in Part A were joined by "or" instead of "and," what would the solution set become?
24. A. Is it possible to write a problem separated by "or" that has no solution? Explain or give an example.

> Or will always contain a set of solutions since the statement is a disjunction, either can be true.
B. Is it possible to have a problem separated by "and" that has a solution set consisting of all real numbers? Explain or give an example.
It is not possible for a conjunction AND statement to have a solution set of all real \#s because of the requirement that both statements have to be true. Determine if each sentence is true or false. Explain your reasoning.
25. $8+6 \leq 14$ and $\frac{1}{3}<\frac{1}{2}$
26. $5-8<0$ or $10+13 \neq 23$

Solve each system, and graph the solution on a number line.
27. $x-9=0$ or $x+15=0$

$$
x=9 \text { or } x=-15
$$

28. $5 x-8=-23$ or $x+1=-10$
$x=3$ or $x=-11$

Graph the solution set to each compound inequality on a number line.
29. $x<-8$ or $x>-8$
30. $0<x \leq 10$

-8

Write a compound inequality for each graph.
31.

$-3 \leq x \leq 4$
32.

$x<-4$ or $x>0$
33. A poll shows that a candidate is projected to receive 57% of the votes. If the margin for error is plus or minus 3%, write a compound inequality for the percentage of votes the candidate can expect to get.

$$
\begin{aligned}
x= & \text { percentage of votes } \\
& 54 \leq x \leq 60
\end{aligned}
$$

34. Mercury is one of only two elements that are liquid at room temperature. Mercury is non-liquid for temperatures less than $-38.0^{\circ} \mathrm{F}$ or greater than $673.8^{\circ} \mathrm{F}$. Write a compound inequality for the temperatures at which mercury is nonliquid.

$$
x=\operatorname{temp} \text { in }{ }^{\circ} \mathrm{F} \text { for for which Mercury is non liquid. }
$$

$$
x<-38 \text { or } x>673.8
$$

Spiral REVIEW-Solving Absolute Value Equations
Solve the two related equations below. Think about the differences between the two equations and their solutions. Do the solutions make sense?
35. $2|x+7|-3=-9$ $2|x+7|-3=-9$
$2|x+7|=-6$
$|x+7|=-3 \longleftarrow$ negative
No SOLUTION
37. $-7<x-4<-3$ $\frac{+4+4+4}{-3<x<1}$
36. $2|x+7|-3=9$
$2|x+7|=12$
$|x+7|=6$
$x+7=6 \quad y \quad x+7=-6$
$x=-1 \quad$ or $\quad x=-13$
38. $7<x-4<-3$
$+4+4+4 \longleftarrow$ And problem
$11<x<-1$
No Solution

