\qquad
\qquad DATE: \qquad Homework Problem Set

Solve and graph each absolute value inequality.

13. Lindsey is making some home-made toffee. The recipe says that she must bring the mixture to a boil at 285 degrees. If she is 7 degrees above or below, the toffee should turn out fine.

Write, solve, and graph an absolute value inequality to model the range of temperatures that will make yummy toffee.

$$
|x-285| \leq 7 \quad x \leq 292 \text { and } x \geq 278 ~ 子 \quad 278 \leq x \leq 292
$$

Challenge Problems 14-16

14. Solve for x using the inequality $a|x-b|+c \leq d$. Assume that $d-c>0$.
$a|x-b| \leq d-c$
$|x-b| \leq \frac{d-c}{a}$
$x-b \leq \frac{d-c}{a}$ AnD $x-b \geq-\left(\frac{d-c}{a}\right)$
$x \geq-\left(\frac{d-c}{a}\right)+b$
15. Write a simple inequality with an absolute value symbol whose solution would be represented by the graph shown below.

$$
\begin{aligned}
& \text { by the graph shown below. } \\
& \text { Answers will vary } \longrightarrow|x+|| | \leq 5
\end{aligned}
$$

16. A student made an error in the following problem. Determine where the error was made and then complete the problem correctly.

$$
\begin{gathered}
|x+3|+9<5 \\
|x+3|<-4 \\
4<x+3<-4 \\
1<x<-7
\end{gathered}
$$

$$
4<x+3<-4 \longleftarrow \text { When an absolute }
$$ value is less than a

17. Hints:

- What values will make the constants equivalent?
- What values will make the variable terms equivalent?

Answers will vary.
Sample responses:
$1 x+2 x+9+3 x=4+6 x+5 ;$
$1 x+2 x+8+4 x=3+7 x+5$
18. Answers will vary.

Sample response:
$\frac{9}{1} x+2=3$

19. Hints:

- How can you tell when an equation has no solution?
- How can you tell when an equation has infinite solutions?

There are many answers, but the coefficient of both x terms have to be the same and the constants must have different values. So, $2 x+3=2 x+4$ is an answer because it is equivalent to $3=4$, for which there is no solution.
20. Hints:

- How does an inequality symbol change from greater than to less than?
- How do we ensure that the signs of the numbers do not change?

Sample response:
$-3 x<-2$
21. $n=-9$
22. $x=12$
23. $m=-6$
24. $p=-8$
25. $x=16$
26. no solution
27. $8,-8$
28. $6,-\frac{29}{4}$
29. $\frac{38}{9},-6$
31. $-3,9$

Unit 3 Solving Equations and Inequalities Lesson 16 Absolute Value Inequalities 415

Spiral REVIEW-Solving Equations

Solve each equation.
21. $10(-6+n)=-150$
22. $51-5 x-9$
23. $6-3(8+m)$
24. $-4+2(p-8)=-36$
25. $2 x+4(5 x-3)-5(4 x+4)$
26. $-3(4 n+1)=-6(2 n-6)$

Spiral REVIEW-Solving Absolute Value Equations

Solve each absolute value equation. Be sure to check your solution(s).
27. $|x|=8$
28. $|5+8 a|-53$
29. $|9 n+8|-46$
30. $|3 n-2|-7$
31. $|3-x|=6 \quad$ 32. $-7|-3-3 r|=-21$
33. $\frac{4}{3},-4$
34. $-6,-8$
35. No solution
36. $7,-21$
416 Module 2 Solving Equations and Systerns of Equations
33. $\frac{|-4-3 n|}{4}=2$
34. $8|x+7|-3-5$
35. $|x+2|+10-9$
36. $4|r+7|+3-59$

Spiral REVIEW-Graphing Lines
Graph the given points, draw the line connecting the points, and write the equation of the line.

40. $y=x-3$
41. $y=2$
42. $y=-\frac{3}{4} x-3$
43. $5 x^{3}+4 x^{2}+8$
44. $7 x-10$
45. $3 x^{2}+7 x y$
46. $14 x^{2}+8$

47.

Reasons
1. Given
2. combine like terms
3. division property

48.

Reasons
1. Given
2. multiplication property
or multiply both sides
by 6

418 Module 2 Solving Equations and Systerns of Equations
Spiral REVIEW-Properties
47. Use algebralc properties to prove that $x+2 x-30$ results in $x-10$.

Statements	Reasons
1. $x+2 x=30$	1. Glven
2. $3 x=30$	2.
3. $x=10$	3.

48. Use algebraic properties to prove that If $\frac{2(3(n+6)-18)}{6}=7$, then $n-7$.

Statements	Reasons
1. $\frac{2(3(n+6)-18)}{6}-7$	1. Glven
2. $2(3(n+6)-18)-42$	2.
3. $2(3 n+18-18)=42$	3.
4. $2(3 n)=42$	4.
5. $6 n=42$	5.
6. $n=7$	6.

Spiral REVIEW-Rearranging Formulas
Use algebraic properties to isolate the indicated variable.
49. $\frac{w}{138}-p$, for w
50. $\frac{4 a+2}{5}=b$, for a
51. $200 p+10-b$, for p
52. $42 x-5 y-x$, for y
49. $w=138 p$
50. $a=\frac{5 b-2}{4}$
51. $p=\frac{b-10}{200}$
52. $y=\frac{z-42 x}{-5}$ or $y=\frac{42 x-z}{5}$

Optional Resource for Exercise 5 - One per student

