LESSON 16
 Absolute Value Inequalities

LEARNING OBJECTIVES

Today I am: reviewing solving and graphing inequalities.
So that I can: determine the steps to solve absolute value inequalities.
> I'll know I have it when I can: solve an absolute value inequality like $|2 x+3|+6 \geq 5$.

Warm-Up Exercises

1. Use the number lines below to graph each inequality.
A. $x<4$
B. $x \geq 1$
C. $2+x \leq 3$

$$
x \leq 1
$$

2. Determine the solution to each absolute value equation.
A. $|x|=4$
B. $|x|=1$
$x=4,-4$
$x=1,-1$
C. $|2+x|=3$

$$
\begin{aligned}
2+x & =3 \text { or } 2+x=-3 \\
x & =1 \text { or } x=-5
\end{aligned}
$$

Exploratory Exercise

Next, we'll combine two ideas-inequalities and absolute value.
3. For each inequality below, think about all the points that would make the inequality true and plot those points. What type of endpoint should each inequality have? Are there other points that would also make the inequality true?
$=4$
\longrightarrow or
A. $|x|<4$
B. $|x| \geq 1$

All the values that are less than 4 cults array

from zero. *and $*<$ | \langle | 4 | | | | | | | | | | 4 | \mid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | | |x_{x}

All the values that are greater than or equal to 1
away from 0 .

C. $|2+x| \leq 3$

All the values less than or equal to 3 units array from 2.
4. If we think about the meaning of absolute value as a distance from zero, it leads us to a strategy that doesn't involve guessing. Consider these examples:

5. Work with your partner to decide where the following examples and solutions fit into Tanya's flow chart below.

Tanja says that there is a better way to get the solutions, rather than just guessing. Below are her steps.
the left side of the inequality.

6. A. Follow Tania's steps for the absolute value inequality $|x+2| \leq 3$. Be sure to show each step. $-3 \leq x \pm 2 \leq-\frac{2}{2} \quad x+2 \leq 3$ and $x+2 \geq-3$
$-5 \leq x \leq 1$
$x \leq 1$ and $x \geq-5$
B. Graph the solution set on the number line.

C. Do Tanya's steps work for \leq or \geq absolute value problems? Explain.
7. A. Follow Tanja's steps for the absolute value inequality $2|3 x-1|<20$. Be sure to show each step.
B. Graph the solution set on the number line.

8. A. Follow Tanja's steps for the absolute value inequality $|2 x+3|+6<5$. Be sure to show each step.

B. Graph the solution set on the number line.

$$
1<2 x+3<-1
$$

9. A. Follow Tanja's steps for the absolute value inequality $|2 x+3|+6>7$. Be sure to show each step.

$$
\begin{gathered}
|2 x+3|^{-6}>1 \\
2 x+3>1 \text { or } \quad \text { OR } \\
2 x>-2 \text {. } \quad 2 x<-1 \\
x>-1 \text { or } x<-2
\end{gathered}
$$

B. Graph the solution set on the number line.

10. A. Follow Tanja's steps for the absolute value inequality $|3 x+2|+6 \geq 5$. Be sure to show each step.

$$
\begin{gathered}
|3 x+2| \geq-1 \\
3 x+2 \geq-1 \text { or } 3 x+2 \leq 1
\end{gathered}
$$

$$
3 x \geq-3 \quad 3 x \leq-1
$$

B. Graph the solution set on the number line.

$$
x \geq-1 \text { or } x \leq \frac{-1}{3}
$$

Lesson Summary

Solving Absolute Value Inequalities

11. A. Draw a number line solution for each example in the Lesson Summary.
B. Give the solutions in interval notation.

NAME: \qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

Solve and graph each absolute value inequality.

13. Lindsey is making some home-made toffee. The recipe says that she must bring the mixture to a boil at 285 degrees. If she is 7 degrees above or below, the toffee should turn out fine.

Write, solve, and graph an absolute value inequality to model the range of temperatures that will make yummy toffee.

Challenge Problems 14-16

14. Solve for x using the inequality $a|x-b|+c \leq d$. Assume that $d-c>0$.
15. Write a simple inequality with an absolute value symbol whose solution would be represented by the graph shown below.

16. A student made an error in the following problem. Determine where the error was made and then complete the problem correctly.

$$
\begin{gathered}
|x+3|+9<5 \\
|x+3|<-4 \\
4<x+3<-4 \\
1<x<-7
\end{gathered}
$$

Spiral REVIEW

Combine Like Terms

Source: Open Middle
17. Open Ended Using the whole numbers from 1 to 9 in the boxes below, create two expressions that are equivalent to one another. You can use each whole number at most once.

Solving Equations

Source: Open Middle
18. Open Ended Use the whole numbers 1 through 9, at most one time each, to find the value of x closest to 0 .

19. Open Ended Use the digits 1 to 9, at most TWO times each, to fill in the boxes to make an equation with no solutions.

Inequalities

Source: Open Middle
20. Using the integers -4 to 4 at most one time each, create an inequality with solutions of $x>\frac{2}{3}$.

Spiral REVIEW—Solving Equations

Solve each equation.
21. $10(-6+n)=-150$
22. $51=5 x-9$
23. $6=3(8+m)$
24. $-4+2(p-8)=-36$
25. $2 x+4(5 x-3)=5(4 x+4)$
26. $-3(4 n+1)=-6(2 n-6)$

Spiral REVIEW—Solving Absolute Value Equations

Solve each absolute value equation. Be sure to check your solution(s).
27. $|x|=8$
28. $|5+8 a|=53$
29. $|9 n+8|=46$
30. $|3 n-2|=7$
31. $|3-x|=6$
32. $-7|-3-3 r|=-21$
33. $\frac{|-4-3 n|}{4}=2$
35. $|x+2|+10=9$
34. $8|x+7|-3=5$
36. $4|r+7|+3=59$

Spiral REVIEW-Graphing Lines

Graph the given points, draw the line connecting the points, and write the equation of the line.

Spiral REVIEW—Writing Equations of Lines

Write the equation of each line.

Spiral REVIEW-Combine Like Terms

For each expression, combine like terms to simplify the expression.
43. $7 x^{3}-6 x^{2}-2 x^{3}+10 x^{2}+8$
45. $-3 x^{2}+2 x y-5 x y+6 x^{2}+10 x y$
44. $9 x-17+10+x-3 x-3$
46. $\frac{1}{2} x-4 x^{2}-\frac{1}{2} x+18 x^{2}+9-1$

Spiral REVIEW-Properties

47. Use algebraic properties to prove that $x+2 x=30$ results in $x=10$.

Statements	Reasons
1. $x+2 x=30$	1. Given
2. $3 x=30$	2.
3. $x=10$	3.

48. Use algebraic properties to prove that if $\frac{2(3(n+6)-18)}{6}=7$, then $n=7$.

Statements	Reasons
1. $\frac{2(3(n+6)-18)}{6}=7$	1. Given
2. $2(3(n+6)-18)=42$	2.
3. $2(3 n+18-18)=42$	3.
4. $2(3 n)=42$	4.
5. $6 n=42$	5.
6. $n=7$	6.

Spiral REVIEW—Rearranging Formulas

Use algebraic properties to isolate the indicated variable.
49. $\frac{w}{138}=p$, for w
50. $\frac{4 a+2}{5}=b$, for a
51. $200 p+10=b$, for p
52. $42 x-5 y=x$, for y

