LIESSON 21

Cookies and Calories-Using the Elimination Method

Opening Exercise

1. Go to student.desmos.com and type in the class code: \qquad to start the Desmos activity Wafers and Crème.
2. Use the space below to make your calculations for the number of calories for the Triple Crème package.

Single Crème

Nutrition Facts
Calories

Double Crème

Nutrition Facts
Calories

3. What was your calculation for the number of calories in the Triple Crème?
4. How did you come up with your answer?

On the third screen you saw the following information. This type of problem can be solved with a system of equations.

Single Crème

Nutrition Facts
Calories 320

Double Crème

Nutrition Facts
Calories 280

Triple Crème

Nutrition Facts
Calories

5. What are the two quantities you don't know?
6. Dean wrote the equation $12 w+6 c=320$ for the Single Crème package.
A. What does the w and c represent in Dean's equations?
B. Using Dean's variables, write an equation for the Double Crème package.
7. It is also possible to solve the Triple Crème packaging problem without writing any equations. How might someone solve this problem without equations?

In the last two lessons, we've looked at solving systems of equations using graphing or substitution. In this lesson, we'll look at a method called elimination to solve the system.

Let $w=$ the number of calories in the top or bottom wafers
Let $c=$ the number of calories in the crème.
For the single crème package, we get $12 w+6 c=320$.
For the double crème package, we get $8 w+8 c=280$.

Discussion

8. What are ways we could simplify each equation?
9. Does simplifying an equation change the value of w or c ?

In the last lesson, we looked at applications of systems of equations and found their solutions by either graphing or with algebra using substitution. In this lesson, we'll use the ideas from the Exploratory Exercise below to eliminate one variable.

Exploratory Exercise

10. A. Are the following statements true?
(A) $2+7=9$
(B) $5-8=-3$
B. What if we multiply equation (A) by 3 , will it still be true? Why? We'll call this new equation (C).
(c) $3(2+7)=(9) 3$

$$
6+21=27
$$

C. What if we add equations (A) and (B) ?
$(A)+(B)$

D. How about if we add equations (B) and (C)?

(B) + (C) | $5-8$ | $=-3$ |
| ---: | :--- |
| $\frac{6+21}{11+13}$ | $=27$ |
| 14 | |

E. What about subtracting equations (A) and (B) ?
(A) $\begin{aligned} \text { (B) } \begin{array}{r}2+7\end{array}=9 \\ \left.-\frac{(5-8}{}=-3\right) \\ -3+15=12\end{aligned}$
F. What can we do to true equations to make new, but also true equations?
11. A. Here is a system of two linear equations. Verify that the solution to this system is $(3,4)$.

Equation A1: $y=x+1$
Equation A2: $y=-2 x+10$
B. Instead of using the substitution method, let's subtract Equation A2 from Equation A1.

$$
\begin{aligned}
& \text { Equation A1: } \quad y=x+1 \\
& \text { Equation A2: } \\
&-(y=-2 x+10) \rightarrow \begin{aligned}
y & =x+1 \\
\square y & =\square+\square-10 \\
0 & =3 x-9 \\
+9 & +9 \\
9 & =3 x \\
3 & =x
\end{aligned} \\
&
\end{aligned}
$$

Back sob.

$$
y=x+1
$$

$$
y=3+1
$$

$$
y=4
$$

$(3,4)$
C. Solve for x and then determine the value of y. Your answershoula be $(3,4)$.
12. Solve this system of linear equations algebraically using the Elimination Method.

ORIGINAL SYSTEM
$3(2 x+y=6)$

$$
x-3 y=-11
$$

eliminate y

NEW SYSTEM

Keep the same.

$$
x=1
$$

Back sub $x=1$

SOLUTION

$$
\left.\begin{array}{c}
\text { Check }(1,4) \\
\begin{array}{c}
2(1)+4
\end{array}=6 \\
2+4=61 \\
1-3(4) ?-11 \\
1-12
\end{array}\right)=-11 .
$$

13. Solve this system of linear equations algebraically using the Elimination Method.

ORIGINAL SYSTEM

NEW SYSTEM

$$
3(x-y=1) \text { Multiply by } 3 \text { or -2 } \rightarrow 3 x-\beta y=3
$$

Back Sub

$$
x-y=1
$$

$$
2-y=1
$$

$$
\begin{aligned}
-y & =-1 \\
y & =1
\end{aligned}
$$

SOLUTION
14. Solve this system of linear equations algebraically using the Elimination Method.

ORIGINAL SYSTEM

NEW SYSTEM
SOLUTION

$$
\begin{array}{r}
2 x+3 y=6 \\
-2(x-y=3)
\end{array} \rightarrow \begin{array}{r}
2 x+3 y=6 \\
-2 x+2 y=-6
\end{array}
$$

Back sch

$$
\begin{aligned}
x-0 & =3 \\
x & =3
\end{aligned} \quad(3,0)
$$

Lesson 21 Cookies and Calories—Using the Elimination Method

15. A. Let's look back on the Opening Exercise and solve this system using elimination. Be sure to explain what you did to change the equations).

Let $w=$ the number of calories in the top or bottom wafers
Let $c=$ the number of calories in the creme.

$$
\left.\left.\begin{array}{rlrl}
2(12 w+6 c=320) \\
-3(8 w+8 c=280
\end{array}\right) \rightarrow \begin{array}{rl}
24 \omega+12 c & =640 \\
\text { eliminate } w \\
12,8 & -24 w-24 c
\end{array}\right)=-840
$$

B. How many calories are in the Triple Creme package? Explain how you know.

Triple Crème
Nutrition Facts
Calories

Lesson Summary

There are three ways to solve a system of equations.

Graphing	Substitution	Elimination
Graph the lines and find the point of \qquad	Rearrange one equation to get one of the variables \qquad then substitute into the other equation.	Add or subtract the equations to eliminate one of the variables. You may need to \qquad one or both of the equations by a number before adding or subtracting.
	$\begin{aligned} & x-y=-1 \rightarrow y=x+1 \\ & 2 x+y=4 \\ & 2 x+x+1=4 \\ & 3 x \quad+1=4 \\ & 3 x \quad=3 \\ & x \quad=1 \\ & y=x+1=1+1=2 \end{aligned}$ solution: (1, 2)	$\begin{aligned} & x-y=-1 \\ & \frac{2 x+y}{}=4 \\ & 3 x+0=3 \\ & x \quad=1 \\ & y=x+1=1+1=2 \end{aligned}$ solution: (1, 2)

\qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

1. Try to answer the following without solving for x and y first.

If $3 x+2 y=6$ and $x+y=4$, then
A. $2 x+y=$?
B. $4 x+3 y=$?
2. Solve the system of equations $\left\{\begin{array}{l}y=\frac{1}{4} x \\ \text { by graphing. } \\ y=-x+5\end{array}\right.$

$$
\frac{1}{4} x=-x+5
$$

3. Create a new system of equations that has the same solution as Problem 2. Show either algebraically or graphically that the systems have the same solution.

4. Without solving the systems, explain why the following systems must have the same solution.

System (i): $\quad 4 x-5 y=13$

$$
3 x+6 y=11
$$

$$
\text { System (ii): } \quad \begin{aligned}
8 x-10 y & =26 \\
x-11 y & =2
\end{aligned}
$$

Solve each system of equations by writing a new system that eliminates one of the variables.
5. $2 x+y=25$
$4 x+3 y=9$
6. $3 x+2 y=4$
$4 x+7 y=1$

