$\qquad$
$\qquad$ DATE: $\qquad$
Homework Problem Set

1. Solve for $x$ and fill in the reasons for each step.

| $\frac{1}{510-5[(x-2) ~}=\frac{1}{10}(x+1)$ | Oigignastamener |
| :---: | :---: |
| $2[10-5(x-2])=(x+1)$ | Mutapy bot sides by 10 |
| - $5 x+10=(x+1)$ | Distribute the 5 |
| $220-5 x y=(x+1)$ | Combine like terms |
| $40-10 x=x+1$ | Distribute the 2 |
| ${ }^{40}=11 \times+1$ | Addition Property of Equality |
| ${ }^{39}=11 \times$ | Subtraction Property of Equalty |
| ${ }^{\frac{39}{11}}=\times$ | Division Property of Equalty. |

Solve each equation for $x$. Be sure to show each step, but you do not need to give a reason for each one.


Solve each equation for $x$.
11. $7 x-[4 x-3(x-1)]=x+12$

$$
\begin{aligned}
7 x-[4 x-3 x+3] & =x+12 \\
7 x-[x+3] & =x+12 \\
7 x-x-3 & =x+12 \\
6 x-3 & =x+12 \\
-x-3 & =12 \\
5 x-3 & +3 \\
5 x & =15 \\
x & =3
\end{aligned}
$$

13. $\frac{1}{2}(18-5 x)=\frac{1}{3}(6-4 x)$

LCD: 6

$$
\begin{gathered}
6^{6}\left(\frac{1}{2}(18-5 x)\right)=\left(\frac{1}{2}(6-4 x)\right)^{2} \\
3(18-5 x)=2(6-4 x) \\
54-15 x=12-8 x \\
54=12+7 x \\
42=7 x \\
6=x
\end{gathered}
$$

12. $2[2(3-5 x)+4]=5[2(3-3 x)+2]$

$$
\begin{gathered}
2[6-10 x+4]=5[6-6 x+2] \\
2[-10 x+10]=5[-6 x+8] \\
-20 x+20=-30 x+40 \\
10 x+20=40 \\
10 x=20 \\
x=2
\end{gathered}
$$

14. $18=\frac{2}{3} x$

$$
\frac{3}{2} \cdot 18=\frac{2}{3} x \cdot \frac{3}{2}
$$

$27=x$
15. Challenge Write an equation that has no solution.

Answers will vary.


* variables are the same \{ will cancel each other out

REVIEW—Evaluate Formulas
For each formula, substitute the given value and simplify.
16. Velocity: $v=\frac{d}{t}$

If $d=50$ miles and $t=2$ hours, what is the velocity, $v$ ? Be sure to include units in your answer.

$$
V=\frac{d}{E} \rightarrow V=\frac{50 \text { miles }}{2 \text { hour }} V=25 \text { miles } / \text { hour }
$$

17. Density: $\rho=\frac{m}{v}$

If the mass, $m$, is 50 kg and the volume, $V$, is 25 cubic centimeters, $\mathrm{cm}^{3}$, what is the density, $\rho$ ?

$$
p=\frac{m}{v} \rightarrow p=\frac{50 \mathrm{~kg}}{25 \mathrm{~cm}^{3}} \longrightarrow p=2 \mathrm{~kg} / \mathrm{cm}^{3}
$$

18. Acceleration: $a=\frac{v_{f}-v_{i}}{t}$

If the final velocity, $V_{f}$, is $20 \mathrm{~m} / \mathrm{s}^{2}$, the initial velocity, $V_{i,}$, is $10 \mathrm{~m} / \mathrm{s}^{2}$ and the time, $t$, in which the change occurs is 5 seconds, what is the acceleration?

$$
a=\frac{v_{f}-v_{i}}{t} \rightarrow a=\frac{20 \mathrm{~m} / \mathrm{s}^{2}-10 \mathrm{~m} / \mathrm{s}^{2}}{5 \text { seconds }} \rightarrow a=\frac{10 \mathrm{~m}}{5 \mathrm{~s}} \rightarrow a=2 \mathrm{~m} / \mathrm{s}^{3}
$$

19. Momentum: $p=m v$

If the mass, $m$, is 10 kg and the velocity, $V$, is $10 \mathrm{~m} / \mathrm{s}^{2}$, what is the momentum, $p$ ?

$$
p=m v \rightarrow p=(10 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{3}\right)=p=100 \mathrm{~kg} \mathrm{~m} / \mathrm{s}
$$

