\qquad
\qquad DATE: \qquad
Homework Problem Set

For the matrices given below, perform each of the following calculations or explain why the calculation is not possible.

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] & B=\left[\begin{array}{rr}
2 & 1 \\
-1 & 4
\end{array}\right] \\
C=\left[\begin{array}{rrr}
5 & 2 & 9 \\
6 & 1 & 3 \\
-1 & 1 & 0
\end{array}\right] & D=\left[\begin{array}{rrr}
1 & 6 & 0 \\
3 & 0 & 2 \\
1 & 3 & -2
\end{array}\right]
\end{array}
$$

9. Let $A=\left[\begin{array}{rr}3 & \frac{2}{3} \\ -1 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}\frac{1}{2} & \frac{3}{2} \\ 4 & 1\end{array}\right]$
A. If $C=6 A+6 B$, determine matrix C.

$$
\begin{aligned}
& C=6\left[\begin{array}{cc}
3 & \frac{2}{3} \\
-1 & 5
\end{array}\right]+6\left[\begin{array}{ll}
\frac{1}{2} & \frac{3}{2} \\
4 & 1
\end{array}\right] \\
& C=\left[\begin{array}{ll}
18 & 4 \\
-6 & 30
\end{array}\right]+\left[\begin{array}{ll}
3 & 9 \\
24 & 6
\end{array}\right]=\left[\begin{array}{ll}
21 & 13 \\
18 & 36
\end{array}\right]
\end{aligned}
$$

B. If $D=6(A+B)$, determine matrix D.

$$
D=6\left(\left[\begin{array}{cc}
3 & \frac{2}{3} \\
-1 & 5
\end{array}\right]+\left[\begin{array}{cc}
\frac{1}{2} & \frac{3}{2} \\
4 & 1
\end{array}\right]\right) \Longrightarrow 6\left[\begin{array}{cc}
\frac{7}{2} & \frac{13}{6} \\
3 & 6
\end{array}\right] \Longrightarrow\left[\begin{array}{cc}
21 & 13 \\
18 & 36
\end{array}\right]
$$

C. What is the relationship between matrices C and D ? Why do you think that is?

They are the same multiplying by scalar appears to be distributive.
10. Let $A=\left[\begin{array}{rr}3 & 2 \\ -1 & 5 \\ 3 & -4\end{array}\right]$ and X be a 3×2 matrix. If $A+X=\left[\begin{array}{rr}-2 & 3 \\ 4 & 1 \\ 1 & -5\end{array}\right]$, then determine X.

$$
\left[\begin{array}{rr}
3 & 2 \\
-1 & 5 \\
3 & -4
\end{array}\right]+\left[\begin{array}{cc}
-5 & 1 \\
5 & -4 \\
-2 & -1
\end{array}\right]=\left[\begin{array}{rr}
-2 & 3 \\
4 & 1 \\
1 & -5
\end{array}\right] \quad x=\left[\begin{array}{rr}
-5 & 1 \\
5 & -4 \\
-2 & -1
\end{array}\right]
$$

11. Let $A=\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 1 & 2 \\ 4 & 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 3 & 1\end{array}\right]$ represent the bus routes of two companies between three cities.
A. Let $C=A+B$. Find matrix C. Explain what the resulting matrix and entry $C_{1,3}$ mean in this context.
$C=\left[\begin{array}{lll}3 & 4 & 5 \\ 5 & 3 & 3 \\ 5 & 6 & 3\end{array}\right]$
$C_{1,3} \rightarrow 5$ ways to
get from city) Fo city 3 using
either bus either bus
B. Let $D=B+A$. Find matrix D. Explain what the resulting matrix and entry $d_{1,3}$ mean in this context.

$$
D=\left[\begin{array}{lll}
5 & 4 & 4 \\
5 & 3 & 3 \\
5 & 6 & 3
\end{array}\right] \text {. }
$$

$d_{1,3} \rightarrow 5$ ways to get from city 1 to city 3 using either bus company
C. What is the relationship between matrices C and D ? Why do you think that is?

Matrices $C\{D$ are equal.
It doesn't matter the order we add matrices.

