NAME: \qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

1. Let $A=\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$ represent the bus routes of two companies between two cities. Find the product $A \cdot B$, and explain the meaning of the entry in row 1 , column 2 of $A \cdot B$ in the context of this scenario.

$$
A \cdot B=\left[\begin{array}{ll}
1 & 3 \\
2 & 0
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]=\left[\begin{array}{cc}
1+12 & 2+9 \\
2+0 & 4+0
\end{array}\right]=\left[\begin{array}{cc}
13 & 11 \\
2 & 4
\end{array}\right]
$$

Row column $_{2}=11 \Longrightarrow \begin{aligned} & 11 \begin{array}{c}\text { possible routes from city } \mid \rightarrow \text { city } 2 \\ \text { starting with abus from company }\end{array}\end{aligned}$
2. Let $A=\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 1 & 2 \\ 4 & 3 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 3 & 1\end{array}\right]$ represent the bus routes of two companies between three cities.
A. Let $C=A \cdot B$. Find matrix C, and explain the meaning of entry $C_{1,3}$.
$C=\left[\begin{array}{lll}1 & 3 & 2 \\ 3 & 1 & 2 \\ 4 & 3 & 2\end{array}\right] \cdot\left[\begin{array}{lll}2 & 1 & 3 \\ 2 & 2 & 1 \\ 1 & 3 & 1\end{array}\right]=\left[\begin{array}{ccc}2+6+2 & 1+6+6 & 3+3+2 \\ 6+2+2 & 3+2+6 & 9+1+2 \\ 8+6+2 & 4+6+6 & 12+3+2\end{array}\right]=\left[\begin{array}{ccc}10 & 13 & 8 \\ 10 & 11 & 12 \\ 16 & 16 & 17\end{array}\right]$
$c_{1,3}=8$
8 routes from city $1 \rightarrow 3$ by taking a
BuS from Company A and then company C
B. Nina wants to travel from City 3 to City 1 and back home to City 3 by taking a direct bus from Company A on the way to City 1 and a bus from Company B on the way back home to City 3. How many different ways are there for her to make this trip?
$\left[\begin{array}{ccc}10 & 13 & 8 \\ 10 & 11 & 12 \\ 16 & 16 & 17\end{array}\right]$
City $3 \rightarrow 3$
$C_{3,3}=17 \rightarrow 17$ ways to go from
back to City 3
City 3 and
C. Oliver wants to travel from City 2 to City 3 by taking first a bus from Company A and then taking a bus from Company B. How many different ways can he do this?

$$
C_{2,3}=12 \quad 12 \text { ways to make trip. }
$$

D. How many routes can Oliver choose from if travels from City 2 to City 3 by first taking a bus from Company B and then taking a bus from Company A?

$$
\begin{array}{r}
B \cdot A=\left[\begin{array}{lll}
2 & 1 & 3 \\
2 & 2 & 1 \\
1 & 3 & 1
\end{array}\right] \cdot\left[\begin{array}{lll}
1 & 3 & 2 \\
3 & 1 & 2 \\
4 & 3 & 2
\end{array}\right]=\left[\begin{array}{ccc}
2+3+12 & 6+1+9 & 4+2+6 \\
2+6+4 & 6+2+3 & 4+4+2 \\
1+9+4 & 3+3+3 & 2+6+2
\end{array}\right]=\left[\begin{array}{ccc}
17 & 16 & 12 \\
12 & 11 & 10 \\
14 & 9 & 10
\end{array}\right] \\
C_{2,3}=10 \text { ways }
\end{array}
$$

3. Consider the matrices

$$
A=\left[\begin{array}{ccc}
3 & 1 & -\frac{1}{2} \\
2 & \frac{2}{3} & 4
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Multiply $A B$ and $B A$ or explain why you cannot.
$A B=$

For the matrices given below, perform each of the following calculations or explain why the calculation is not possible.

$$
\begin{array}{ll}
A=\left[\begin{array}{ll}
\frac{1}{2} & 3 \\
2 & \frac{2}{3}
\end{array}\right] & B=\left[\begin{array}{rrr}
9 & -1 & 2 \\
-3 & 4 & 1
\end{array}\right] \\
C=\left[\begin{array}{lll}
3 & 1 & 3 \\
1 & 0 & 1 \\
3 & 1 & 3
\end{array}\right] & D=\left[\begin{array}{rrrr}
2 & 0 & -2 & \frac{1}{2} \\
3 & 2 & 1 & 0
\end{array}\right]
\end{array}
$$

12. Let F be an $m \times n$ matrix. Then what do you know about the dimensions of matrix G in the problems below if each expression has a value?
A. $F+G$
G must have the same dimension $(m \times n)$
B. $F G$

G must have n rows but any columns
C. MF

G must have m columns but any rows
13. Consider an $m \times n$ matrix A such that $m \neq n$. Explain why you cannot evaluate A^{2}.

Because the column of A does not match the row old A

$$
(m \times n) \cdot(m \times n)
$$

Not possible
14. Let $A=\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 2 & 0\end{array}\right], B=\left[\begin{array}{lll}0 & 2 & 1 \\ 1 & 0 & 1 \\ 2 & 2 & 0\end{array}\right], C=\left[\begin{array}{lll}0 & 2 & 1 \\ 0 & 0 & 1 \\ 1 & 2 & 0\end{array}\right]$ represent the routes of three airlines A, B, and C between three cities.
A. Zane wants to fly from City 1 to City 3 by taking Airline A first and then Airline B second. How many different ways are there for him to travel?

$$
A \cdot B=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 2 & 1 \\
1 & 0 & 1 \\
2 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
5 & 4 & 1 \\
2 & 6 & 2 \\
2 & 2 & 3
\end{array}\right)_{\text {row }}
$$

There is only one way.
B. Zane did not like Airline A after the trip to City 3 , so on the way home, Zane decides to fly Airline C first and then Airline B second. How many different ways are there for him to travel?

$$
C \cdot B=\left[\begin{array}{lll}
4 & 2 & 2 \\
2 & 2 & 0 \\
2 & 2 & 3
\end{array}\right] \rightarrow C_{1,3}=2 \text { ways }
$$

