NAME: \qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

1. Consider the matrices.

$$
A=\left[\begin{array}{ccc}
3 & 1 & -\frac{1}{2} \\
2 & \frac{2}{3} & 4
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

A. Would you consider B to be an identity matrix for A ? Why or why not?

No, Identity matrices must be square and the main diagonal is all 1 , and all other elements are 0 . Also, if you multiplied A and B, you would not get A.
B. Would you consider $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ or $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ an identity matrix for A ? Why or why not?

2. Recall the bus and trolley matrices from the lesson:

$$
B=\left[\begin{array}{llll}
1 & 3 & 1 & 0 \\
2 & 0 & 2 & 2 \\
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right] \text { and } I=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

A. Explain why it makes sense that $B I=I B$ in the context of the problem.

Since there is only one way to take a trolley in each city, the result is the same no matter if you take it before or after the bus.
B. Multiply out $B I$ and show $B I=I B$.

$$
B I=\left[\begin{array}{llll}
1 & 3 & 1 & 0 \\
2 & 0 & 2 & 2 \\
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right]
$$

$$
I B=\left[\begin{array}{llll}
1 & 3 & 1 & 0 \\
2 & 0 & 2 & 2 \\
2 & 1 & 0 & 1 \\
0 & 2 & 1 & 0
\end{array}\right]
$$

C. Consider the multiplication that you did in Part B. What about the arrangement of the entries in the identity matrix causes $B I=B$?

When you multiply $B I$, you are multiplying the rows of B by the columns of I. Since every entry in the columns of I but the row you are currently multiplying is by zero, you only get a single value of B to carryover, and it is carried over in the same position.
3. Let $A=\left[\begin{array}{llll}0 & 1 & 1 & 2 \\ 1 & 0 & 2 & 1 \\ 2 & 1 & 0 & 2 \\ 1 & 2 & 1 & 0\end{array}\right]$ represent airline flights of
one airline between 4 cities.
A. We use the notation A^{2} to represent the product $A \cdot A$. Calculate A^{2}. What do the entries in matrix A^{2} represent?

© Ekaphon maneechot/Shutterstock.com

$$
\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 2 & 1 \\
2 & 1 & 0 & 2 \\
1 & 2 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{llll}
0 & 1 & 1 & 2 \\
1 & 0 & 2 & 1 \\
2 & 1 & 0 & 2 \\
1 & 2 & 1 & 0
\end{array}\right]=A^{2}=\left[\begin{array}{llll}
5 & 5 & 4 & 3 \\
5 & 5 & 2 & 6 \\
3 & 6 & 6 & 5 \\
4 & 2 & 5 & 6
\end{array}\right]
$$

$$
\text { rows }=i \quad \text { columns }=j
$$

Each entry of A^{2} is the $\#$ of ways to get from cityi to city w/ one stop in between.
B. Jade wants to fly from City 1 to City 4 with exactly one stop. How many different ways are there for her to travel?
$(A)_{1,4}^{2}=3$ different ways to travel
C. Now Jade wants to fly from City 1 to City 4 with exactly two stops. How many different ways are there for her to choose?

$$
\begin{aligned}
& A^{2} \cdot A=A^{3} \\
& {\left[\begin{array}{llll}
5 & 5 & 43 \\
5 & 2 & 2 & 6 \\
3 & 6 & 6 & 5 \\
4 & 2 & 5
\end{array}\right] \cdot\left[\begin{array}{lll}
0 & 1 & 12 \\
1 & 0 & 2 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]=\left[\begin{array}{ccc}
16 & 15 & 18 \\
15 & 19 \\
23 & 19 & 21 \\
18 & 21 & 19 \\
10 & 24 & 24
\end{array}\right]} \\
& \left(A^{3}\right)_{1,4}=23 \text { different ways }
\end{aligned}
$$

