\qquad
\qquad DATE: \qquad
Homework Problem Set

$$
a_{1}=f(1)=1 \quad d=4
$$

1. Write a formula for the $n^{\text {th }}$ term of the arithmetic sequence $1,5,9,13, \ldots \ldots$. Then use the formula to find $f(20)$.

$$
\begin{aligned}
& f(n)=1+4(n-1) \\
& \text { OR } \\
& f(n)=-3+4 n
\end{aligned}
$$

$$
\begin{aligned}
f(20) & =1+4(20-1) \\
& =1+4(19)
\end{aligned}
$$

$$
f(20)=77
$$

2. Find the $f(8)$ of the arithmetic sequence when $f(1)=4$ and whose common difference is -7 .

$$
\begin{aligned}
& a_{1}=4=- \\
& f(n)=4-7(n-1) \\
& O R(n)=11-7 n
\end{aligned}
$$

3. Daniel gets a job with a starting salary of \$70,000 per year with an annual raise of $\$ 3,000$. What will Daniel's salary be in the $10^{\text {th }}$ year? Write an explicit formula and then solve.

$$
\begin{aligned}
& f(n)=70,000+3000(n-1) \\
& \text { OR } \\
& f(n)=67000+3000 \mathrm{n} \\
& f(10)=\$ 97,000
\end{aligned}
$$

© noppawan09/Shutterstock.com
4. Save-A-Lot Theater ticket prices were originally $\$ 1$ each. Prices have risen by 50 cents each year since. What is the price of a ticket 8 years later? Write an explicit formula and then solve.

$$
\begin{gathered}
f(1)=1 \quad d=0.50 \\
f(n)=1+.5(n-1) \\
\text { OR } \\
f(n)=.5+.5 n
\end{gathered}
$$

$$
f(9)=\$ 5.00
$$

5. The graph shows how the cost of a snowboarding trip depends on the number of boarders.
A. Fill in the chart of the data.

Snowboarding Costs

© Elena Fieryheels/Shutterstock.com

n	$f(n)$
0	50
1	75
2	100
3	125
4	150

$$
\begin{aligned}
& \text { B. Write the explicit rule. } \quad \begin{array}{l}
\quad f(1)=25 \\
f(n)=75+25(n-1) \\
0 R \\
f(n)=50+25 n
\end{array}
\end{aligned}
$$

C. Draw a line connecting the data points. What is the y-intercept? What is the slope? Write an equation of the line in slope-intercept form.

$$
\begin{aligned}
& y \text {-intercept }=50 \\
& \text { sLope }=25
\end{aligned}
$$

D. What do you notice about the answers in Parts B and C? Explain (use m and d in your response).
The 2 equations are the same
Slope (m) = common difference (d)
y-int $=\operatorname{term} 0$
6. Consider the sequence that follows a plus 3 pattern: $4,7,10,13,16, \ldots$.
A. Write a formula for the sequence using the $f(n)$ notation. $f(1)=4 \quad d=3$

$$
\begin{gathered}
f(n)=4+3(n-1) \\
O R \\
f(n)=3 n+1
\end{gathered}
$$

B. Does the formula $f(n)=\underline{3(n-1)}+4$ generate the same sequence? Why might some people prefer this formula? π They were just switched.

$$
\text { yes, it is similar to } y=m x+b \text { for } m \text {. }
$$

C. Graph the terms of the sequence as ordered pairs $(n, f(n))$ on the coordinate plane. What do you notice about the graph?

It is linear.

7. Consider a sequence that follows a minus 5 pattern: $30,25,20,15, \ldots$.
A. Write a formula for the $n^{\text {th }}$ term of the sequence. Be sure to specify what value of n your formula starts with. $f(1)=30 \quad d=-5$

$$
f(n)=30-5(n-1)
$$

B. Using the formula, find the $20^{\text {th }}$ term of the sequence.

$$
\begin{aligned}
f(20) & =30-5(20-1) \\
& =30-5(19) \\
& =30-95 \\
f(20) & =-65
\end{aligned}
$$

C. Graph the terms of the sequence as ordered pairs ($n, f(n)$) on the coordinate plane.

Challenge Problems 8-16

Find an explicit form $f(n)$ for each of the following arithmetic sequences (assume a is some real number and x is some real number).

8. $-34,-22,-10,2, \ldots$

$$
\begin{gathered}
f(n)=-34+12(n-1) \\
O R \\
f(n)=12 n-46
\end{gathered}
$$

9. $\frac{1}{5}, \frac{1}{10}, 0,-\frac{1}{10}, \ldots$

$$
\begin{array}{r}
f(n)=\frac{1}{5}-\frac{1}{10}(n-1) \\
o R \\
f(n)=\frac{3}{10}-\frac{1}{10} n
\end{array}
$$

10. $x+4, x+8, x+12, x+16, \ldots$

$$
\begin{aligned}
& f(n)=x+4+4(n-1) \\
& \quad \text { OR } \\
& f(n)=x+4 n
\end{aligned}
$$

11. $a, 2 a+1,3 a+2,4 a+3, \ldots$
12. Consider the arithmetic sequence $13,24,35, \ldots$.
A. Find an explicit form for the sequence in terms of n.

$$
\begin{aligned}
& f(n)=13+11(n-1) \\
& f(n)=11 n+2
\end{aligned}
$$

B. Find the $40^{\text {th }}$ term.

$$
\begin{aligned}
& f(40)=11(40)+2 \\
& f(40)=442
\end{aligned}
$$

C. If the $n^{\text {th }}$ term is 299 , find the value of n.

$$
\begin{aligned}
299 & =11 n+2 \\
n & =27
\end{aligned}
$$

$$
f(27)=299
$$

13. If $-2, a, b, c, 14$ forms an arithmetic sequence, find the values of a, b, and c.
14. $3+x, 9+3 x, 13+4 x, \ldots$ is an arithmetic sequence for some real number x.
A. Find the value of x.
B. Find the $10^{\text {th }}$ term of the sequence.
15. Find an explicit form $f(n)$ of the arithmetic sequence where the $2^{\text {nd }}$ term is 25 and the sum of the $3^{\text {rd }}$ term and $4^{\text {th }}$ term is 86 .
16. In the right triangle figure below, the lengths of the sides $a \mathrm{~cm}, b \mathrm{~cm}$, and $c \mathrm{~cm}$ of the right triangle form a finite arithmetic sequence. If the perimeter of the triangle is 18 cm , find the values of a, b, and c.

