NAME: \qquad PERIOD: \qquad DATE: \qquad
Homework Problem Set

1. Consider a sequence that follows a times 5 pattern: $1,5,25,125, \ldots$.
A. Write a formula for the $n^{\text {th }}$ term of the sequence. Be sure to specify what value of n your formula starts with. $a_{1}=1 \quad r=5$

$$
f(n)=1(5)^{n-1} \longrightarrow f(n)=5^{n-1}
$$

B. Using the formula, find the $10^{\text {th }}$ term of the sequence.

$$
\begin{array}{ll}
f(10)=5^{10-1} & a_{1}=5^{1-1}=5^{0}=1 \\
f(10)=5^{9} & a_{2}=5^{2-1}=5^{1}=5 \\
f(10)=1,953,125 & a_{3}=5^{3-1}=5^{2}=25
\end{array}
$$

C. Graph the terms of the sequence as ordered pairs $(n, f,(n))$ on a coordinate plane.

2. A radioactive substance decreases in the amount of grams by one-third each year. If the starting amount of the substance in a rock is $1,452 \mathrm{~g}$, write an explicit formula for a sequence that models the amount of the substance left after the end of each year. $r=\frac{2}{3}$

$$
f(n)=1452\left(\frac{2}{3}\right)^{n-1} \quad a_{1}=f(1)=1452
$$

3. Write the first five terms of each geometric sequence.

© solomon7/Shutterstock.com
A. $f(1)=20, r=\frac{1}{2}$
B. $a_{1}=4, r=3$

$$
20,10,5, \frac{5}{2}, \frac{5}{4}
$$

$$
4,12,36,108,324
$$

Write the explicit formula for the general term ($n^{\text {th }}$ term) of a geometric sequence described. Then use it to find the indicated term of each sequence. The first term is $f(1)$ or a_{1}, and the common ratio is r.
4. Find $f(8)$ when $f(1)=6, r=2$.
5. Find a_{12} when $a_{1}=5, r=-2$.

$$
\left.\begin{array}{rl}
f(n) & =6(2)^{n-1} \\
f(8) & =6(2)^{8-1} \\
& =6(2)^{7} \\
& =6(128) \\
f(8) & =768
\end{array}\right\}
$$

* *

$$
\left\{\begin{array}{l}
a_{n}=5(-2)^{n-1} \\
a_{12}=5(-2)^{12-1} \\
a_{12}=5(-2)^{11} \\
a_{12}=-10,240
\end{array}\right.
$$

6. Find a_{25} when $a_{1}=1000, r=-\frac{1}{2}$.

$$
\begin{aligned}
& a_{n}=1000\left(-\frac{1}{2}\right)^{2-1} \\
& a_{25}=1000\left(-\frac{1}{2}\right)^{25-1} \\
& a_{25}=1000\left(-\frac{1}{2}\right)^{24} \\
& a_{25}=\frac{125}{2097152}
\end{aligned}
$$

7. Find $f(8)$ when $f(1)=9000, r=-\frac{1}{3}$

$$
\begin{aligned}
& f(n)=9000\left(-\frac{1}{3}\right)^{n-1} \\
& f(8)=9000\left(-\frac{1}{3}\right)^{8-1} \\
& f(8)=-\frac{1000}{243}
\end{aligned}
$$

Write a formula for the $\boldsymbol{n}^{\text {th }}$ term of each geometric sequence. Then use the formula to find $f(7)$.
8. $3,12,48,192, \ldots \ldots$.

$$
\begin{aligned}
& f(1)=3 \quad r=4 \\
& f(n)=3(4)^{n-1} \\
& f(7)=3(4)^{7-1} \\
& f(7)=3(4)^{6} \\
& f(7)=12,288
\end{aligned}
$$

Find the first 5 terms of the following functions.
10. $a_{n}=1^{n}$

$$
\begin{aligned}
& 1,1,1,1,1, \ldots \\
& a_{1}=1^{1}=1 \\
& a_{2}=1^{2}=1 \\
& a_{3}=1^{3}=1 \\
& a_{4}=1^{4}=1 \\
& a_{5}=1^{5}=1
\end{aligned}
$$

9. $18,6,2, \frac{2}{3}, \ldots \ldots$

$$
f(7)=\frac{2}{81}
$$

Write a formula for the general term (the $n^{\text {th }}$ term) of each geometric sequence. Then use the formula for $f(n)$ to find $f(9)$.
12. $5,-1, \frac{1}{5},-\frac{1}{25}, \ldots . \quad r=-\frac{1}{5}$

$$
\begin{aligned}
f(n) & =5\left(-\frac{1}{5}\right)^{n-1} \\
f(9) & =5\left(-\frac{1}{5}\right)^{9-1} \\
& =5\left(-\frac{1}{5}\right)^{8} \\
f(9) & =\frac{1}{78,125}
\end{aligned}
$$

13. $0.07,0.007,0.0007,0.00007, \ldots$

$$
\begin{aligned}
& r=0.1 \\
& f(n)=0.07(0.1)^{n-1} \\
& f(9)=0.07(0.1)^{9-1} \\
& f(9)=0.07(0.1)^{8} \\
& f(9)=0.0000000007
\end{aligned}
$$

14. A mine worker discovers an ore sample containing 500 mg of radioactive material. It is discovered that the radioactive material has a half life of 1 day. (This means that each day, half of the material decays, and only half is left.) Find the amount of radioactive material in the sample at the beginning of the $7^{\text {th }}$ day.

$$
a_{1}=500 \quad r=\frac{1}{2}
$$

$$
a_{n}=500\left(\frac{1}{2}\right)^{n-1}
$$

$$
a_{7}=500\left(\frac{1}{2}\right)^{7-1}
$$

$$
a_{7}=500\left(\frac{1}{2}\right)^{6}
$$

$a_{7}=\frac{500}{64}=7.8125 \mathrm{mg}$
15. A culture of bacteria doubles every 2 hours. If there are 500 bacteria at the beginning, how many bacteria will there be after 24 hours?

$$
f(n)=500(2)^{n-1}
$$

$$
f(13)=500(2)^{13-1}
$$

$$
f(13)=500(2)^{12}
$$

$f(13)=20,480,000$

© iurii/Shutterstock.com

© KuLouKu/Shutterstock.com

16. Challenge You complain that the hot tub in your hotel suite is not hot enough. The hotel tells you that they will increase the temperature by 10% each hour. If the current temperature of the hot tub is $75^{\circ} \mathrm{F}$, what will be the temperature of the hot tub after 3 hours, to the nearest tenth of a degree?

17. Find the common ratio and an explicit form in each of the following geometric sequences.
A. $4,12,36,108, \ldots \quad r=3 \quad a_{1}=4$

$$
a_{n}=4(3)^{n-1}
$$

B. $162,108,72,48, \ldots$

$$
\begin{aligned}
r=\frac{108}{162} & =\frac{2}{3} \quad a_{1}=162 \\
a_{n} & =162\left(\frac{2}{3}\right)^{n-1}
\end{aligned}
$$

C. $\frac{4}{3}, \frac{2}{3}, \frac{1}{3}, \frac{1}{6}, \ldots$

$$
\begin{aligned}
& r=\frac{1}{2} \quad a_{1}=\frac{4}{3} \\
& a_{n}=\frac{4}{3}\left(\frac{1}{2}\right)^{n-1}
\end{aligned}
$$

D. $x z, x^{2} z^{3}, x^{3} z^{5}, x^{4} z^{7}, \ldots$

$$
\begin{aligned}
& r=\frac{x^{2} z^{3}}{x z}=x z^{2} \quad f(1)=x z \\
& f(n)=x z\left(x z^{2}\right)^{n-1}
\end{aligned}
$$

18. The first term in a geometric sequence is 54 , and the $5^{\text {th }}$ term is $\frac{2}{3}$. Find an explicit form for the geometric sequence.

$$
\begin{aligned}
f(1) & =54 \quad r=? \\
\frac{2}{3} & =54(r)^{5-1} \\
\frac{2}{3} & =54(r)^{4} \\
\frac{2}{3} & =54 r^{4}
\end{aligned} \quad \Rightarrow \begin{aligned}
& \frac{2}{3}=\frac{54 / r^{4}}{54} \\
& \frac{1}{81}=r^{4} \\
& \sqrt[4]{\frac{1}{81}}=\sqrt[4]{r^{4}} \\
& \frac{1}{3}=r
\end{aligned}
$$

128 Module 3 Functions
19. If $2, a, b,-54$ forms a geometric sequence, find the values of a and b.

$$
a_{1}=2 \quad r=?
$$

$$
\left.\begin{array}{lll}
-54 & =2(r)^{4-1} \\
-54 & =2(r)^{3} \\
-54 & =2 r^{3} \\
-\frac{54}{2}=\frac{2 r^{3}}{2}
\end{array}\right\} \begin{array}{ll}
-27=r^{3} & f(n)=2(-3)^{n-1} \\
\sqrt[3]{-27 \sqrt[3]{r^{3}}} & 2, \frac{-6}{r=-3}
\end{array} \underbrace{\underbrace{18}_{x-3},-54}_{x-3} \underbrace{18}_{x-3}, \begin{aligned}
& a=-6 \\
& b=18
\end{aligned}
$$

20. Find the explicit form $f(n)$ of a geometric sequence if $f(3)-f(1)=48$ and $\frac{f(3)}{f(1)}=9$.

$$
\begin{aligned}
& x=f(3) \\
& y=f(1) \\
& \left\{\begin{array}{l}
x-y=48 \\
\frac{x}{y}=9
\end{array}\right. \\
& f(3)=6(r)^{3-1} \\
& \frac{54}{6}=\frac{6 r^{2}}{6} \\
& 9=r^{2} \\
& r=3
\end{aligned}
$$

$$
\text { suss. }\left\{\begin{array}{l}
x-y=48 \longrightarrow x-y=48 \\
\text { of }
\end{array}\right.
$$

$$
\text { eq. }\left\{\frac{x}{y}=9 \longrightarrow x=9 y\right.
$$

$$
9 y-y=48
$$

Back Sub

$$
8 y=48
$$

$$
\begin{aligned}
& x-6=48 \\
& x=54
\end{aligned}
$$

$$
y=6
$$

$$
\frac{x=54}{\uparrow}
$$

first term third term

