\qquad PERIOD: \qquad DATE: \qquad
Homework Problem Set

Factor the following examples of the difference of perfect squares. Notice that these are not written as quadratic functions. They are simply expressions-we could not graph them or tell their key features.

1. $t^{2}-25$

$$
(t+5)(t-5)
$$

3. $16 h^{2}-36 k^{2}$

$$
(4 h+6 k)(4 h-6 k)
$$

5. $x^{4}-4$

$$
\left(x^{2}+2\right)\left(x^{2}-2\right)
$$

7. $9 y^{2}-100 z^{2}$

$$
(3 y+10 z)(3 y-10 z)
$$

2. $4 x^{2}-9$

$$
(2 x+3)(2 x-3)
$$

4. $4-b^{2}$

$$
(2-b)(2+b)
$$

6. $x^{6}-25$

$$
\left(x^{3}+5\right)\left(x^{3}-5\right)
$$

8. $a^{4}-b^{6}$

$$
\left(a^{2}+b^{3}\right)\left(a^{2}-b^{3}\right)
$$

9. Challenge $r^{4}-16 s^{4}$ (Hint: This one factors twice.)

$$
\begin{aligned}
& \left(r^{2}+4 s^{2}\right)\left(r^{2}-4 s^{2}\right) \\
& \left(r^{2}+4 s^{2}\right)(r+25)(r-2 s)
\end{aligned}
$$

For each of the following, factor out the greatest common factor (GCF).
10. $6 y^{2}+18$

$$
6\left(y^{2}+3\right)
$$

12. $21 b-15 a$

$$
3(7 b-5 a)
$$

11. $27 y^{2}+18 y$
$9 y(3 y+2)$
12. $14 c^{2}+2 c$
$2 c(7 c+1)$
13. $3 x^{2}-27$

$$
\begin{aligned}
& 3\left(x^{2}-9\right) \\
& 3(x+3)(x-3)
\end{aligned}
$$

15. The measure of a side of a square is x units. A new square is formed with each side 6 units longer than the original square's side. Write an expression to represent the area of the new square. (Hint: Draw the new square and count the squares and rectangles.)

$$
\begin{aligned}
A= & (x+6)(x+6) \\
& x^{2}+12 x+36
\end{aligned}
$$

16. In the accompanying diagram, the width of the inner rectangle is represented by $x-3$ and the length by $x+3$. The width of the outer rectangle is represented by $3 x-4$ and the length by $3 x+4$.

A. Write an expression to represent the area of the larger rectangle.

$$
(3 x-4)(3 x+4)=9 x^{2}-16
$$

B. Write an expression to represent the area of the smaller rectangle.

$$
(x-3)(x+3)=x^{2}-9
$$

Mixed REVIEW
Factor completely. * not difference of 2 squares
17. $9 x^{2}-25 x$

$$
x(9 x-25)
$$

19. $9 x^{2}-30 x+25$

$$
(3 x-5)(3 x-5)
$$

$$
(3 x-5)^{2}
$$

21. $6 x^{2}+7 x+2$

22. $3 x^{2}+10 x+7$

$$
\begin{aligned}
& \frac{3 x^{2}+7 x+3 x+7}{x(3 x+7)+1(3 x+7)} \\
& (x+1)(3 x+7)
\end{aligned}
$$

18. $9 x^{2}-25$

$$
(3 x+5)(3 x-5)
$$

20. $2 x^{2}+7 x+6$

$$
(x+2)(2 x+3)
$$

22. $8 x^{2}+20 x+8$

CF: 4
$4\left(2 x^{2}+5 x+2\right)$

$$
\begin{aligned}
& 2 x \\
& x \\
& 2 \\
& 2 x^{2} \\
& \hline 4 x \\
& \hline 4 x \\
& \hline
\end{aligned} \quad \begin{aligned}
& 1 \\
& \hline
\end{aligned} \quad(2 x+1)(x+2)
$$

24. $4 x^{2}+4 x+1$

$$
\begin{aligned}
& \frac{4 x^{2}+2 x+2 x+1}{2 / 4} 2 \\
& 2 x(2 x+1)+1(2 x+1) \\
& (2 x+1)(2 x+1)=(2 x+1)^{2}
\end{aligned}
$$

Challenge Problems
25. The area of the rectangle at the right is represented by the expression $\mathbf{1 8} \mathbf{x}^{\mathbf{2}} \mathbf{+ 1 2 \boldsymbol { x }} \mathbf{+ \mathbf { 2 }}$ square units. Write two expressions to represent the dimensions, if the length is known to be twice the width.

$$
\begin{aligned}
& 2\left(9 x^{2}+6 x+1\right) \\
& 2\left(9 x^{2}+3 x+3 x+1\right) \\
& 2(3 x(3 x+1)+1(3 x+1)) \\
& 2(3 x+1)(3 x+1) \\
& (6 x+2)(3 x+1)
\end{aligned}
$$

26. Two mathematicians are neighbors. Each owns a separate rectangular plot of land that shares a boundary and has the same dimensions. They agree that each has an area of $2 x^{2}+3 x+1$ square units. One mathematician sells his plot to the other. The other wants to put a fence around the perimeter of his new combined plot of land. How many linear units of fencing does he need? Write your answer as an expression in x.

Note: This question has two correct approaches and two different correct solutions. Can you find them both?

$$
\begin{aligned}
& 2 x^{2}+3 x+1 \\
& \frac{2 x^{2}+2 x+x+1}{2 x(x+1)+1(x+1)} \\
& (2 x+1)(x+1)
\end{aligned}
$$

OR

Spiral REVIEW-Factoring
Factor the following quadratic expressions.
27. $2 x^{2}+10 x+12$

$$
2(x+2)(x+3)
$$

29. $x^{2}-12 x+20$

$$
(x-10)(x-2)
$$

31. $2 x^{2}-x-10$

$$
(x+2)(2 x-5)
$$

33. $x^{2}-2 x-15$ $(x-5)(x+3)$
34. $4 x^{2}+12 x+9$

$$
(2 x+3)^{2}
$$

28. $6 x^{2}+5 x-6$

$$
(3 x-2)(2 x+3)
$$

30. $x^{2}-21 x-22$

$$
(x-22)(x+1)
$$

32. $6 x^{2}+7 x-20$

$$
(3 x-4)(2 x+5)
$$

34. $x^{2}+2 x-15$

$$
(x+5)(x-3)
$$

36. $49 x^{2}+28 x+4$

$$
(7 x+2)^{2}
$$

