LESSON 16

More Factoring Strategies

LEARNING OBJECTIVES

> Today I am: looking at special cases when factoring.
> So that I can: factor a difference of squares.
> I'll know I have it when I can: graph these special cases.

Opening Exploration-A Special Case

1. Consuela ran across the quadratic equation y $=4 x^{2}-16$ and wondered how it could be factored. She rewrote it as $y=4 x^{2}+0 x-16$
A. Use one of the methods you've learned to factor this quadratic function.

$$
\begin{array}{ll}
\quad y=4 x^{2}-16 & \frac{4 x^{2}-8 x+8 x-16}{4\left(x^{2}-4\right)} \\
\quad \begin{array}{l}
4(x-2)(x+2) \\
\text { B. } \\
\quad \text { What are the key features of the parabola's graph? } \\
\end{array} & (4 x+8)(x-2) \\
& y(x+2)(x-2)
\end{array}
$$

vertex: \qquad , \qquad)
C. Graph the quadratic in the grid at the right.

Factor the following quadratic functions. Use Consuela's idea of a 0 middle term if necessary. Look for patterns as you go.
2. $y=x^{2}-9$

$$
\begin{aligned}
& y=x^{2}+0 x-9 \\
& y=(x+3)(x-3)
\end{aligned}
$$

$$
3 /)^{-9} /-3
$$

$$
\text { 3. } y=x^{2}-25
$$

$$
y=(x+5)(x-5)
$$

4. What is the generic rule for factoring a quadratic in the form $a^{2}-b^{2}$?

$$
a^{2}-b^{2}=(a+b)(a-b)
$$

5. The expression $a^{2}-b^{2}$ is called The Difference of Squares. Discuss with your partner where that

$$
\begin{array}{ll}
x^{2}-36=(x+6)(x-6) & x^{2}-1=(x+1)(x-1) \\
x^{2}-81=(x+9)(x-9) & 4 x^{2}-9=(2 x+3)(2 x-3) \\
49 x^{2}-36
\end{array}
$$

One of the other special cases is Perfect Square Trinomials. You've already encountered a few of these but we'll focus on them now and see why they are special. $64 x^{2}-25$
6. Factor each of the following. Use any method.

$$
\begin{array}{ll}
\text { A. } y=x^{2}+6 x+9 \\
y=(x+3)(x+3) \\
y=(x+3)^{2} & \text { B. } y=x^{2}-4 x+4 \\
y=(x-2)(x-2) \\
y=(x-2)^{2}
\end{array}
$$

7. A. What are the x-intercepts for these two equations? Remember the x-intercept is where $y=0$.
B. What is different about the x-intercepts for these two equations?

Determine the key features of each quadratic and then graph the parabola.

$$
\text { 8. } \begin{array}{rlr}
y & y=x^{2}+6 x+9 & \text { Standard Form } \\
y & =(x+3)(x+3) \text { Factored Form } \\
y & =(x+3)^{2} & \text { Vertex Form }
\end{array}
$$

Key features:
x-intercepts: $\underline{-3}, \underline{-3}$
y-intercept: 9
vertex: $(-3,0)$

9. $y=x^{2}-4 x+4 \quad$ Standard Form
$y=(x-\underline{2})(x-\underline{Z})$ Factored Form
$y=(x-2)^{2}+0 \quad$ Vertex Form
Key features:
x-intercepts: 2,2
y-intercept: 4
vertex: (2,0)

10. Both of the quadratic equations in Exercises 8 and 9 are perfect square trinomials. What is special about their graphs?

Let's look at a couple of perfect square trinomial that have $a \neq 1$. Factor each one.
11. $y=4 x^{2}+4 x+1$

$$
\begin{aligned}
& \text { 12.) } y=9 x^{2}-12 x+4 \\
& y=9 x^{2}-6 x-6 x+4 \\
& y=3 x(3 x-2)-2(3 x-2) \\
& y=(3 x-2)(3 x-2)
\end{aligned}
$$

Determine the key features of each quadratic and then graph the parabola.

Practice Problems-Factor each perfect square trinomial or difference of squares. Notice that these are not written as quadratic functions. They are simply expressions-we could not graph them or tell their key features.

Lesson Summary

Difference of Squares

$$
\begin{gathered}
(a x)^{2}-b^{2} \\
(a x-b)(a x+b)
\end{gathered}
$$

Perfect Square Trinomials
$(a x)^{2}+2 a b x+b^{2}$

$$
(a x+b)^{2}
$$

NAME: \qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

Factor the following examples of the difference of perfect squares. Notice that these are not written as quadratic functions. They are simply expressions-we could not graph them or tell their key features.

1. $t^{2}-25$
2. $4 x^{2}-9$
3. $16 h^{2}-36 k^{2}$
4. $4-b^{2}$
5. $x^{4}-4$
6. $x^{6}-25$
7. $9 y^{2}-100 z^{2}$
8. $a^{4}-b^{6}$
9. Challenge $r^{4}-16 s^{4}$ (Hint: This one factors twice.)

For each of the following, factor out the greatest common factor (GCF).

10. $6 y^{2}+18$
11. $27 y^{2}+18 y$
12. $21 b-15 a$
13. $14 c^{2}+2 c$
14. $3 x^{2}-27$
15. The measure of a side of a square is x units. A new square is formed with each side 6 units longer than the original square's side. Write an expression to represent the area of the new square. (Hint: Draw the new square and count the squares and rectangles.)

Original Square

16. In the accompanying diagram, the width of the inner rectangle is represented by $x-3$ and the length by $x+3$. The width of the outer rectangle is represented by $3 x-4$ and the length by $3 x+4$.
A. Write an expression to represent the area of the larger rectangle.
B. Write an expression to represent the area of the smaller rectangle.

Mixed REVIEW

Factor completely.

17. $9 x^{2}-25 x$
18. $9 x^{2}-25$
19. $9 x^{2}-30 x+25$
20. $2 x^{2}+7 x+6$
21. $6 x^{2}+7 x+2$
22. $8 x^{2}+20 x+8$
23. $3 x^{2}+10 x+7$
24. $4 x^{2}+4 x+1$

Challenge Problems

25. The area of the rectangle at the right is represented by the expression $\mathbf{1 8} \mathbf{x}^{\mathbf{2}} \mathbf{+ 1 2 x} \mathbf{+} \mathbf{2}$ square units. Write two expressions to represent the dimensions, if the length is known to be twice the width.
26. Two mathematicians are neighbors. Each owns a separate rectangular plot of land that shares a boundary and has the same dimensions. They agree that each has an area of $2 x^{2}+3 x+1$ square units. One mathematician sells his plot to the other. The other wants to put a fence around the perimeter of his new combined plot of land. How many linear units of fencing does he need? Write your answer as an expression in x.

© Ron and Joe/Shutterstock.com

Note: This question has two correct approaches and two different correct solutions. Can you find them both?

Spiral REVIEW-Factoring

Factor the following quadratic expressions.
27. $2 x^{2}+10 x+12$
28. $6 x^{2}+5 x-6$
29. $x^{2}-12 x+20$
30. $x^{2}-21 x-22$
31. $2 x^{2}-x-10$
32. $6 x^{2}+7 x-20$
33. $x^{2}-2 x-15$
34. $x^{2}+2 x-15$
35. $4 x^{2}+12 x+9$
36. $49 x^{2}+28 x+4$

