\qquad
\qquad
\qquad Homework Problem Set

1. Factor completely: $15 x^{2}-40 x-15$. GCF: 5

$$
\begin{gathered}
5\left(3 x^{2}-8 x-3\right) \\
\begin{array}{c|c|c|}
\hline 3 x & 1 \\
\times & 3 x^{2} & x \\
-3 & -9 x & -3 \\
\hline
\end{array}
\end{gathered}
$$

$$
5\left(3 x^{2}-8 x-3\right)
$$

$$
5\left(3 x^{2}-9 x+1 x-3\right)
$$

$$
5(3 x(x-3)+1(x-3))
$$

$$
5(3 x+1)(x-3)
$$

Solve each equation.

$$
\begin{aligned}
& \text { 2. } \frac{4 x^{2}}{4}=\frac{9}{4} \\
& \sqrt{x^{2}}=\sqrt{\frac{9}{4}} \\
& x= \pm \frac{3}{2} \\
& 4 . \sqrt{(d+4)^{2}} \pm \sqrt{5} \\
& d+4= \pm \sqrt{5} \\
& d=-4 \pm \sqrt{5}
\end{aligned}
$$

6. $12=-2(5-k)^{2}+20$

$$
-8=-2(5-k)^{2}
$$

$$
\pm \sqrt{4}=\sqrt{(5-k)^{2}}
$$

$$
\pm 2=5-k
$$

$$
2=5-k \quad-2=5-k
$$

$$
k=3 \text { or } 7
$$

3. $3 y^{2}-8=13$

$$
\begin{aligned}
& 3 y^{2}=21 \\
& \sqrt{y^{2}}=\sqrt[2]{7} \\
& y= \pm \sqrt{7}
\end{aligned}
$$

5. $4(g-1)^{2}+6=13$

$$
\begin{aligned}
& 4(g-1)^{2}=7 \\
& \sqrt{(g-1)^{2}}=\sqrt[2]{\frac{7}{4}} \\
& g-1= \pm \sqrt{\frac{7}{4}} \\
& g=1 \pm \sqrt{\frac{7}{4}} \longrightarrow g=1 \pm \frac{\sqrt{7}}{2}
\end{aligned}
$$

7. $-5 x^{2}=-500$

$$
\begin{aligned}
& \sqrt{x^{2}}=\sqrt{100} \\
& x= \pm 10
\end{aligned}
$$

8. $7 n^{2}+448=0$
$\begin{aligned} 7 n^{2} & =-448 \\ \sqrt{n^{2}} & =\sqrt{-64}\end{aligned}$
No SOlution
10. $\frac{x^{2}}{25}-6=-2$

$$
\begin{gathered}
\frac{x^{2}}{25}=4 \\
\sqrt{x^{2}}= \pm \sqrt{100} \\
x= \pm 10
\end{gathered}
$$

12. $2(x-1)^{2}=8$

$$
\begin{aligned}
& \sqrt{(x-1)^{2}}=\sqrt[f]{4} \\
& x-1= \pm 2 \\
& x-1=2 \quad x-1=-2 \\
& x=3 \text { or }-1
\end{aligned}
$$

14. $(3 x+6)^{2}-81=0$

$$
\begin{aligned}
& \sqrt{(3 x+6)^{2}}=\sqrt[5]{81} \\
& 3 x+6= \pm 9 \\
& 3 x+6=9 \quad 3 x+6=-9 \\
& x=1 \text { or }-5
\end{aligned}
$$

11. $4\left(x^{2}-15\right)=84$

$$
\begin{gathered}
x^{2}-15=21 \\
\sqrt{x^{2}}=\sqrt[y 36]{ }
\end{gathered}
$$

$$
x= \pm 6
$$

13. $(x+2)^{2}-6=30$

$$
\begin{gathered}
\sqrt{(x+2)^{2}}=\sqrt[t]{36} \\
x+2= \pm 6 \\
x+2=6 \quad x+2=-6 \\
x=4 \text { or }-8
\end{gathered}
$$

15. $\sqrt{(4 x-5)^{2}} \sqrt[\pm]{64}$

$$
\begin{aligned}
& 4 x-5= \pm 8 \\
& 4 x-5=8 \quad 4 x-5=-8 \\
& x=\frac{13}{4} \text { or } \frac{-3}{4}
\end{aligned}
$$

16. Mischief is an Alaskan malamute dog that competes with her trainer in the agility course. Within the course, Mischief must leap through a hoop. Mischief's jump can be modeled by the equation $h=-16 t^{2}+12 t$, where h is the height of the leap in feet and t is the time since the leap, in seconds. At what values of t does Mischief start and end the jump?

© Lois McCleary/Shutterstock.com

Need to find where height h, is zero and solve

$$
\begin{aligned}
& -16 t^{2}+12 t=0 \\
& -4 t(4 t-3)=0 \\
& t=0 \text { or } \frac{3}{4} \text { seconds }
\end{aligned}
$$

$*$
Leap starts at 0 and ends at $\frac{3}{4}$ seconds
17. A string 60 inches long is to be laid out on a tabletop to make a rectangle of perimeter 60 inches. Write the width of the rectangle as $15+x$ inches. What is an expression for its length? What is an expression for its area? What value for x gives an area of the largest possible value? Describe the shape of the rectangle for this special value of x.

Length: $15-x \quad$ Area $(15-x)(15+x)$
Largest area is when $x=0$
rectangle is a square $\omega /$ side length
of 15 in .

