$\qquad$ PERIOD: $\qquad$ DATE: $\qquad$ Homework Problem Set

Graph the following and identify the key features of the graph.

1. $f(x)=(x-2)(x+6)$ $x^{2}+4 x-12$


$$
x \text {-intercepts: } x=2,-6
$$

$$
y \text {-intercept: }-12
$$

$$
\begin{aligned}
f(-2)= & \text { vertex: } \quad(-2,-16) \\
(-2)^{2}+4(-2)-12= & -16 \\
& \text { axis of symmetry: } x=-2
\end{aligned}
$$

$$
x=\frac{-4}{2(1)}=-2
$$

2. $h(x)=-3(x-2)(x+2)$

$$
\begin{aligned}
y \text {-int } h(0)= & -3(0-2)(0+2) \\
& -3(-2)(2)=12
\end{aligned}
$$


x-intercepts: $2,-2$
$y$-intercept: $\qquad$
vertex: $\qquad$
axis of symmetry: $\qquad$
3.

$$
\begin{aligned}
& g(x)=-2(x-3)(x+5) \\
& g(0)=-2(0-3)(0+5) \\
& g(0)=30
\end{aligned}
$$


xiniterepeps: 3, -5
y-interept: 30
vertex: $-(-1,32)$
axis of symmetry: - $\quad x=-1$

$$
\begin{gathered}
\frac{3+-5}{2}=-1 \\
-2(-1-3)(-1+5) \\
-2(-4)(4)=32
\end{gathered}
$$

4. 

$$
\begin{aligned}
& h(x)=x^{2}-16 \\
& h(x)=(x+4)(x-4) \\
& h(0)=(0+4)(0-4)=-16
\end{aligned}
$$


x-intercepts: $4,-4$
$y$-intercept: -16
vertex: $(0,-16)$ axis of symmetry: $\qquad$

$$
x=\frac{-b}{2 a}=\frac{0}{2(1)}=0
$$

5. $p(x)=x^{2}-2 x+1$ $p(x)=(x-1)(x-1)$

x-intercepts: $\quad 1$
$y$-intercept: $\quad 1$
vertex: $\quad(1,0)$
axis of symmetry: $\quad X=1$

$$
\begin{aligned}
& x=\frac{-b}{2 a}=\frac{-(-2)}{2(1)}=1 \\
& p(1)=(1)^{2}-2(1)+1 \\
& p(1)=0
\end{aligned}
$$

6. $q(x)=4 x^{2}+20 x+24$

$$
\begin{aligned}
& 4\left(x^{2}+5 x+6\right) \\
& 4(x+3)(x+2)
\end{aligned}
$$


$x$-intercepts: $-3,-2$
$\qquad$
vertex: $\left(-\frac{5}{2},-1\right)$
axis of symmetry: $\qquad$

$$
x=\frac{-5}{2(1)}=\frac{-5}{2}
$$

7. A rocket is launched from a cliff. The relationship between the height of the rocket, $h$, in feet, and the time since its launch, $t$, in seconds, can be represented by the following function:

$$
h(t)=-16 t^{2}+80 t+384 .
$$

A. Sketch the graph of the motion of the rocket.

$$
\begin{aligned}
h(t)=-16\left(t^{2}-5 t-24\right) & \text { Key Features } \\
-16(t-8)(t+3) & \\
& \\
& \\
& \text { clint }(8,-3) \\
& \\
& \\
& \text { vertex }(384) \\
& \\
& 2.5,484)
\end{aligned}
$$


B. When does the rocket hit the ground?

## 8 seconds ( $x$-int)

C. When does the rocket reach its maximum height?

D. What is the maximum height the rocket reaches?

## at 2.5 seconds

484 feet (vertex)
E. At what height was the rocket launched?

$$
384 \text { feet ( } y \text {-intercept) }
$$

8. Given the $x$-intercepts for the graph of a quadratic function, write a possible formula for the quadratic function, in factored form.
A. $x$-intercepts: -1 and -6

$$
f(x)=(x+1)(x+6)
$$

B. $x$-intercepts: -2 and $\frac{2}{3}$

$$
\begin{aligned}
& f(x)=a(x+2)\left(x-\frac{2}{3}\right) \\
& \text { OR } \\
& f(x)=a(x+2)(3 x+2)
\end{aligned}
$$

C. $x$-intercepts: -3 and 0

$$
f(x)=a x(x+3)
$$

D. $x$-intercept: 7

$$
\begin{aligned}
& f(x)=a(x-7)^{2} \text { OR } \\
& f(x)=a(x-7)(x-7)
\end{aligned}
$$

9. Suppose a quadratic function is such that its graph has $x$-intercepts of -3 and 2 and a $y$-intercept of 6 .
A. Write a formula for the quadratic function.
$(0,6)$

$$
\begin{aligned}
f(x) & =a(x+3)(x-2) \\
6 & =a(0+3)(0-2) \\
6 & =a(3)(-2) \\
6 & =-6 a \\
a & =-1 \rightarrow f(x)=-(x+3)(x-2)
\end{aligned}
$$

B. Sketch the graph of the function.


