LESSON21 Completing the Square Like Ancient Mathematicians

LEARNING OBJECTIVES

- Today I am: reading about how the mathematician, al-Khwarizmi, solved a quadratic equation using an area model.
- So that I can: learn to complete the square.
- I'll know I have it when I can: solve al-Khwarizmi's problem.

Opening Reading

One of the earliest of the Arab mathematicians, Muhammad ibn Musa al-Khwarizmi (approximately 780–850 CE), was employed as a scholar at the House of Wisdom in Baghdad in present day Iraq. Al-Khwarizmi wrote a book on the subjects of *al-jabr* and *almuqabala*. Al-Khwarizmi's word *al-jabr* eventually became our word *algebra*, and, of course, the subject of his book was what we call algebra. In his algebra book, al-Khwarizmi solves the following problem:

What must be the square which, when increased by ten of its own roots, amounts to 39?

The equation al-Khwarizmi wanted to solve is $x^2 + 10x = 39$

When al-Khwarizmi solved the equation $x^2 + 10x = 39$ by completing the square, he completed an actual square. The solid line portion of the figure has area $x^2 + 5x + 5x = x^2 + 10x$. 1. Discuss with your group, how al-Khwarizmi may have solved this problem. How did the square he drew help him solve this problem?

Let's see how al-Khwarizmi may have solved his quadratic equation by looking at some other examples with algebra tiles.

Completing the Square Investigation

- 2. At the right, is a partial square representing $x^2 + 6x$.
 - A. Mark each rectangle with the algebraic expression it represents.
 - B. How many unit tiles would you need to complete the square?

9 unit tiles

C. What are the dimensions of the completed square?

D. Replace *c* and the question mark to make the statement true.

 $x^{2} + 6x + \frac{9}{c} = (x + ?)^{2}$ $x^{2} + 6x + 9 = (x + ?)^{2}$ c = -9

- 3. A. Draw a partial square with algebra tiles to represent $x^2 + 10x$ in the space below.
 - B. How many unit tiles would you need to complete the square?

C. What are the dimensions of the completed square?

c = ____

D. Replace *c* and the question mark to make the statement true.

 $x^{2} + 10x + c = (x + ?)^{2}$

 $\chi^{a} + p\chi + 25 = (\chi + 5)^{2}$

? = _____

?=3

5 X × 5 X X

- 4. At the right, is a partial square representing $x^2 + 8x$.
 - A. Mark each rectangle with the algebraic expression it represents.
 - B. How many unit tiles would you need to complete the square?
 - C. What are the dimensions of the completed square? (X+4)(X+4)
 - D. Replace *c* and the question mark to make the statement true.
 - $x^2 + 8x + c = (x + ?)^2$ c =_____ $x^{2} + 8x + 16 = (x + 4)^{2}$
 - 5. A. Draw a partial square with algebra tiles to represent $x^2 + 2x$ in the space below.

B. How many unit tiles would you need to complete the square?

1 unit tile

C. What are the dimensions of the completed square?

D. Replace *c* and the question mark to make the statement true.

5

ratiles to represent
$$X$$
 1
 X X^2 X
1 X 1

? = _____

Discussion

6. A. How do you determine the c in each of these cases?

B. How do you determine the ? in each of these cases?

7. In the expression, $x^2 + bx + c$, how do you use b to get the value of c to form a perfect square?

Practice Exercises

Find the missing c in each problem and then rewrite the trinomial as a perfect square binomial.

9. $x^2 + 20x + c$ 8. $x^2 + 12x + c^4$ x^a+12x+36 x^2 + 20x + 100 $(x+6)^{2}$ 10. $x^{2}-4x+c$ $x^{2}-4x+c$ $x^{2}-4x+4$ (x+10)² 11. $x^2 - 6x + c$ $x^{2}-6x+9$ $(x-2)^2$ $(\chi - 3)^2$ 12. $x^2 - 10x + c$ 13. $x^2 - 12x + c$ x2-10x+25 x - 12x + 36 $(x-5)^{a}$ $(x - 6)^{2}$ $\begin{array}{c} 14. \ x^{2} + 3x + c \\ \times^{2} + 3x + \frac{9}{4} \end{array}$ $\begin{array}{c} \textbf{15} \quad x^2 - 3x + c \\ \textbf{x^2 - 3x + 9} \\ \textbf{(x - 3)^2} \end{array}$ $(x + \frac{3}{2})^{2}$ (16) $x^{2} + 7x + c^{2}$ $(\frac{7}{2})^{2}$ $17. x^2 + bx + c$ x²+7×+ 49 4 $x^{2}+bx+\left(\frac{b}{a}\right)^{2}$ $(x + \frac{7}{2})^{2}$ $(x+b)^2$

$$x^{2} + 6x + 9 = (x+3)$$

$$x^{2} + 10x + 25 = (x+5)^{2}$$

$$x^{2} + 8x + 16 = (x+4)^{2}$$

$$x^{2} + 8x + 1 = (x+1)^{2}$$

	Steps	😭 🧃 Algebra Work		
Α.	Complete the square on the left side of the equation.	$x^{2} + 10x + 25 = 39 + 25$		
	How many units did you need to add?			
В.	Add the same amount to the right side.			
С.	What is your new equation?	$(x+5)^2 = 64$		
D.	Take the square root of both sides. Don't forget the \pm			
	sign.	X+5 = IX		
		-5 -5		
E.	What are the answers to al-Khwarizmi's equation?			
		X = -518		
		-5+8 -5-8		
F.	Check to see if both numbers make the original			
	statement true.	X = 3, -13		

18. al-Khwarizmi's equation was $x^2 + 10x = 39$. Let's look at each side of his equation.

19. al-Khwarizmi gave his instructions for solving the problem in words rather than symbols, as follows:

What must be the square which, when increased by ten of its own roots, amounts to 39? The solution is this: You have the number of roots, which in the present instance yields five. This you multiply by itself; the product is 25. Add this to 39; the sum is 64. Now take the root of this which is eight, and subtract from it half the number of the roots, which is five; the remainder is three. This is the root of the square which you sought for.

How does al-Khwarizmi's solution compare to the process you used in Exercise 18?

Discussion

20. Using the patterns developed in this lesson, how could you factor the expression, $x^2 - bx + c$.

21. Explain what is shown in each stage of completing the square in the Lesson Summary.

NAME: ______ PERIOD: _____ DATE: _____

Homework Problem Set

Find the missing c in each problem and then rewrite the trinomial as a perfect square binomial.

1. $x^2 + 24x + c$	2.	x^{2} + 28 x + c
--------------------	----	------------------------

3. $x^2 - 36x + c$ 4. $x^2 - 70x + c$

5. $x^2 - 20x + c$ 6. $x^2 - 24x + c$

7. $x^2 + 1x + c$ 8. $x^2 - 1x + c$

9. $x^2 + 5x + c$ 10. $x^2 + 9x + c$

Spiral REVIEW—Simplifying Radicals

Simplify each radical expression.

$ \begin{array}{c} 11. \sqrt{12} \\ \sqrt{4} \\ \sqrt{4} \\ 2 \\ \sqrt{3} \end{array} $	12. $\sqrt{18}$	13. √ 24	14. √ 7
15. √ <u>36</u>	16. √ 50	17. √ 20	18. √ 5

Spiral REVIEW—Solving Equations

Solve each equation.

19. 27 = -3 + 5(x + 6) 20. -13 = 5(2 + 4m) - 2m 21. 4(-x + 4) = 12

22.
$$-2 = -(n-8)$$
 23. $-6(1-5v) = 54$ 24. $8 = 8v - 4(v+8)$

25.
$$10(1+3b) = -20$$
 26. $-5n - 8(1+7n) = -8$ 27. $8(4k-4) = -5k - 32$