LESSON 21

Completing the Square Like Ancient Mathematicians

LEARNING OBJECTIVES

$>$ Today I am: reading about how the mathematician, al-Khwarizmi, solved a quadratic equation using an area model.
$>$ So that I can: learn to complete the square.
> I'll know I have it when I can: solve al-Khwarizmi's problem.

Opening Reading

One of the earliest of the Arab mathematicians, Muhammad ibn Musa al-Khwarizmi (approximately 780-850 CE), was employed as a scholar at the House of Wisdom in Baghdad in present day Iraq. Al-Khwarizmi wrote a book on the subjects of al-jabr and almuqabala. Al-Khwarizmi's word al-jabr eventually became our word algebra, and, of course, the subject of his book was what we call algebra. In his algebra book, al-Khwarizmi solves the following problem:

What must be the square which, when increased by ten of its

© Neveshkin Nikolay/Shutterstock.com

1. Discuss with your group, how al-Khwarizmi may have solved this problem. How did the square he drew help him solve this problem?

Let's see how al-Khwarizmi may have solved his quadratic equation by looking at some other examples with algebra tiles.

Completing the Square Investigation

2. At the right, is a partial square representing $x^{2}+6 x$.
A. Mark each rectangle with the algebraic expression it represents.
B. How many unit tiles would you need to complete the square?

$$
9 \text { unit tiles }
$$

C. What are the dimensions of the completed square?

$$
(x+3)(x+3)
$$

D. Replace c and the question mark to make the statement true.

$$
\begin{gathered}
9 \\
x^{2}+6 x+c=(x+?)^{2} \\
x^{2}+6 x+9=(x+3)^{2}
\end{gathered} \quad c=-9 \quad ?=3
$$

3. A. Draw a partial square with algebra tiles to represent $x^{2}+10 x$ in the space below.
B. How many unit tiles would you need to complete the square?

$$
25 \text { unit tiler }
$$

C. What are the dimensions of the completed square?

$$
(x+5)(x+5)
$$

D. Replace c and the question mark to make the statement true.

$$
\begin{array}{lc}
x^{2}+10 x+c=(x+?)^{2} & c= \\
x^{2}+10 x+25 & =(x+5)^{2}
\end{array}
$$

$$
?=
$$

\qquad

Lesson 21 Completing the Square Like Ancient Mathematicians

4. At the right, is a partial square representing $x^{2}+8 x$.
A. Mark each rectangle with the algebraic expression it represents.
B. How many unit tiles would you need to complete the square?

$$
16
$$

C. What are the dimensions of the completed square?

$$
(x+4)(x+4)
$$

D. Replace c and the question mark to make the statement true.

$$
\begin{array}{ll}
x^{2}+8 x+c=(x+?)^{2} & c= \\
x^{2}+8 x+16 & =(x+4)^{2}
\end{array} \quad ?=
$$

5. A. Draw a partial square with algebra tiles to represent $x^{2}+2 x$ in the space below.

B. How many unit tiles would you need to complete the square?

$$
1 \text { unit tile }
$$

C. What are the dimensions of the completed square?

$$
(x+1)(x+1)
$$

D. Replace c and the question mark to make the statement true.

$$
x^{2}+2 x+c=(x+?)^{2} \quad c=
$$

$$
x^{2}+2 x+1=(x+1)^{2}
$$

Discussion

$$
\begin{aligned}
& x^{2}+6 x+9=(x+3)^{2} \\
& x^{2}+10 x+25=(x+5)^{2} \\
& x^{2}+8 x+16=(x+4)^{2} \\
& x^{2}+2 x+1=(x+1)^{2}
\end{aligned}
$$

6. A. How do you determine the c in each of these cases?

$$
\left(\frac{b}{2}\right)^{2} \rightarrow C
$$

B. How do you determine the ? in each of these cases?

$$
\frac{b}{2} \longrightarrow ?
$$

7. In the expression, $x^{2}+b x+c$, how do you use b to get the value of c to form a perfect square?

Practice Exercises
Find the missing c in each problem and then rewrite the trinomial as a perfect square binomial.
8.

$$
\begin{aligned}
& x^{2}+12 x+c \\
& x^{2}+12 x+\frac{36}{2} \\
& (x+6)^{2} \\
& x^{2}-4 x+c \\
& \left.x^{2}-4 x+\frac{12}{2}\right)^{2} \\
& (x-2)^{2}
\end{aligned}
$$

10.
11.

$$
\begin{aligned}
& x^{2}-10 x+c \\
& x^{2}-10 x+25 \\
& (x-5)^{2}
\end{aligned}
$$

14.)

$$
\begin{aligned}
& x^{2}+3 x+c \\
& x^{2}+3 x+\frac{9}{4} \\
& \left(x+\frac{3}{2}\right)^{2}
\end{aligned}
$$

(16.)

$$
\begin{aligned}
& x^{2}+7 x+c^{6} \quad\left(\frac{7}{2}\right)^{2} \\
& x^{2}+7 x+\frac{49}{4} \\
& \left(x+\frac{7}{2}\right)^{2}
\end{aligned}
$$

9.

$$
\begin{aligned}
& x^{2}+20 x+c \\
& x^{2}+20 x+100 \\
& (x+10)^{2}
\end{aligned}
$$

11. $x^{2}-6 x+c$

$$
\begin{aligned}
& x^{2}-6 x+9 \\
& (x-3)^{2}
\end{aligned}
$$

13. $x^{2}-12 x+c$

$$
\begin{gathered}
x^{2}-12 x+36 \\
(x-6)^{2}
\end{gathered}
$$

15. $x^{2}-3 x+c$

$$
\begin{aligned}
& x^{2}-3 x+\frac{9}{4} \\
& \left(x-\frac{3}{2}\right)^{2}
\end{aligned}
$$

17.

$$
\begin{aligned}
& x^{2}+b x+c \\
& x^{2}+b x+\left(\frac{b}{2}\right)^{2} \\
& \left(x+\frac{b}{2}\right)^{2}
\end{aligned}
$$

18. al-Khwarizmi's equation was $x^{2}+10 x=39$. Let's look at each side of his equation.

Steps	$\left(\frac{10}{2}\right)^{2}$ Algebra Work
A. Complete the square on the left side of the equation.	
How many units did you need to add?	

19. al-Khwarizmi gave his instructions for solving the problem in words rather than symbols, as follows:

What must be the square which, when increased by ten of its own roots, amounts to 39?
The solution is this: You have the number of roots, which in the present instance yields five. This you multiply by itself; the product is 25 . Add this to 39 ; the sum is 64 . Now take the root of this which is eight, and subtract from it half the number of the roots, which is five; the remainder is three. This is the root of the square which you sought for.

How does al-Khwarizmi's solution compare to the process you used in Exercise 18?

Discussion

20. Using the patterns developed in this lesson, how could you factor the expression, $x^{2}-b x+c$.
21. Explain what is shown in each stage of completing the square in the Lesson Summary.

\qquad

Homework Problem Set

Find the missing c in each problem and then rewrite the trinomial as a perfect square binomial.

1. $x^{2}+24 x+c$
2. $x^{2}+28 x+c$
3. $x^{2}-36 x+c$
4. $x^{2}-70 x+c$
5. $x^{2}-20 x+c$
6. $x^{2}-24 x+c$
7. $x^{2}+1 x+c$
8. $x^{2}-1 x+c$
9. $x^{2}+5 x+c$
10. $x^{2}+9 x+c$

Spiral REVIEW—Simplifying Radicals

Simplify each radical expression.
11. $\sqrt{12}$
12. $\sqrt{18}$
13. $\sqrt{24}$
14. $\sqrt{7}$
$\sqrt{4} \cdot \sqrt{3}$
$\sqrt{9} \sqrt[b]{2}$
$2 \sqrt{3}$
$3 \sqrt{2}$
15. $\sqrt{36}$
16. $\sqrt{50}$
17. $\sqrt{20}$
18. $\sqrt{5}$

Spiral REVIEW—Solving Equations

Solve each equation.
19. $27=-3+5(x+6)$
20. $-13=5(2+4 m)-2 m$
21. $4(-x+4)=12$
22. $-2=-(n-8)$
23. $-6(1-5 v)=54$
24. $8=8 v-4(v+8)$
25. $10(1+3 b)=-20$
26. $-5 n-8(1+7 n)=-8$
27. $8(4 k-4)=-5 k-32$

