LESSON

 22
A Little Bit More

Completing the squat

LEARNING OBJECTIVES

- Today I am: completing the square when there is a value for " c ".
> So that I can: learn to complete the square of any quadratic expression.
> Ill know I have it when I can: complete the square with the expression $x^{2}-\frac{1}{2} x+\frac{3}{4}$.

Opening Exercise

1. Suppose you got the two expressions below and were asked to complete the square on each one. What trouble might you have? Why?

$\left.5\left(\frac{18}{2}\right)^{2}\right)$

$$
x^{2}+18 x+81
$$

$$
(x+9)^{2}
$$

2. Draw a algebra tile model for $x^{2}+18 x$. How many unit tiles are needed to complete the square?

Exploratory Challenge
When an expression is not a perfect square, you can use a tabular method to rewrite this expression as an equivalent perfect square binomial.
3. We are looking for a perfect square binomial that matches our quadratic expression as closely as possible. How do we know there must be an x-term in our binomial?
4. The quadratic expression in standard form has a linear term of
 $+18 x$. What constant term must the perfect square binomial have if the linear term coefficient is positive 18 ? Fill in the missing cells both outside and inside the square.
5. Find an expression equivalent to $x^{2}+18 x+80$ that includes a perfect square binomial. How can you check that your expression is equivalent?

$$
\text { Perfect square binomial } \rightarrow a^{2}+2 a b+b^{2}
$$

Practice Exercises

Rewrite each expression by completing the square.

$$
(a-b)^{2}
$$

6. $a^{2}-4 a+15$

$$
\begin{aligned}
& \left(a^{2}-4 a+4\right)+15-4 \\
& \left(-\frac{4}{2}\right)^{2} \\
& (a-2)^{2}+11
\end{aligned}
$$

7. $n^{2}-2 n-15$

$$
\begin{gathered}
\left(n^{2}-2 n+\frac{1}{9}\right)-15-1 \\
\left(\frac{-2}{2}\right)^{2}
\end{gathered}
$$

$$
(n-1)^{2}-16
$$

$$
\begin{array}{ll}
\text { 8. } c^{2}+20 c-40 & \text { 9. } x^{2}-1000 x+60000 \\
\left(c^{2}+20 c+100\right)-40-100 & \left(x^{2}-1000 x+250000\right)+60000-250000 \\
(c+10)^{2}-140 & (x-500)^{2}-190000
\end{array}
$$

10. $y^{2}-8 y+10$
11. $k^{2}+6 k+6$

$$
y^{2}-8 y+16+10-16
$$

$$
(y-4)^{2}-6
$$

13. $p^{2}+10 p+12$
$z^{2}-2 z+1+3-1$

$$
p+10 p+25+12-25
$$

$$
(z-1)^{2}+2
$$

$$
(p+5)^{2}-13
$$

14. $x^{2}-\frac{1}{2} x+\frac{3}{4}$
15. How could you write $y=x^{2}-\frac{1}{2} x+\frac{3}{4}$ in vertex form?

$$
\begin{aligned}
& \left(x^{2}-\frac{1}{2} x+\frac{1}{16}\right)+\frac{3}{4}-\frac{1}{16} \\
& \left(-\frac{1}{2} \cdot \frac{1}{2}\right)^{2} \\
& \left(x-\frac{4 \cdot 3}{4 \cdot \frac{1}{16}}=\frac{12-1}{16}\right)^{2}+\frac{11}{16}
\end{aligned}
$$

$$
y=\left(x-\frac{1}{4}\right)^{2}+\frac{11}{16}
$$

vertex: $\left(\frac{1}{4}, \frac{11}{16}\right)$

Lesson Summary

A visual model can help you understand the process of completing the square.

Source: http://www.greatmathsteachingideas.com/2015/04/04/algebra-tiles-from-counting-to-completing-the-square/

Homework Problem Set

Rewrite each expression by completing the square.

1. $q^{2}+12 q+32$
2. $m^{2}-4 m-5$
3. $x^{2}-12 x+6$
4. $a^{2}+70 a+1225$
5. $z^{2}-30 z+10$
6. $y^{2}-6 b y+20$
7. Which of these expressions would be most easily rewritten by factoring? Justify your answer.

Spiral REVIEW—Simplifying Radicals

Simplify each radical expression.

8. $3+\sqrt{4}$
9. $3-\sqrt{4}$
10. $4+\sqrt{8}$
11. $3 \sqrt{4}$
12. $4 \sqrt{8}$
13. $3+5 \sqrt{4}$
14. $3-5 \sqrt{4}$
15. $2+\sqrt{37-1}$
16. $\sqrt{36-9}$
17. $\sqrt{36}-\sqrt{9}$
18. $\sqrt{25-9}$
19. $\sqrt{25}-\sqrt{9}$
$\sqrt{27}$
$\sqrt{9} \sqrt{3}$
$3 \sqrt{3}$
20. $\sqrt{16-4}$
21. $\sqrt{10-6}$
22. $2 \sqrt{9}+3 \sqrt{25-16}$
23. $5 \sqrt{12-3}$

Spiral REVIEW-Multiplying Radical Binomials

24. $(x-\sqrt{3})(x+\sqrt{3})$
25. $(x+\sqrt{6})(x+\sqrt{8})$
$\sqrt{4} \sqrt{12}$

$$
\begin{aligned}
& x^{2}+x \sqrt{8}+x \sqrt{6}+\sqrt{48} \\
& x^{2 \sqrt{2}} \\
& x^{2}+2 x \sqrt{2}+x \sqrt{6}+4 \sqrt{3}
\end{aligned}
$$

26. $(a-\sqrt{2})(a-\sqrt{2})$
27. $(b+\sqrt{3})(b-2 \sqrt{3})$
28. $(2 w-3)(2+\sqrt{2})$
29. $(y+\sqrt{6})(y-\sqrt{6})$
30. $(4 x+\sqrt{2})(4 x-\sqrt{2})$
31. $(a-2 \sqrt{2})(a+2 \sqrt{2})$
