```
NAME:
```

_____ PERIOD: _____ DATE: _____

Homework Problem Set

1. Determine the number and type of each solution for the following quadratic equation **x**.

A. $x^2 - 6x + 8 = 0$	B. $x^2 - 8x + 16 = 0$	C. $4x^2 + 1 = 0$
B^{2}_{40C} ; (-6) ² - 4(1)(8)	62_4ac: (-8)-4(1)(16)	$P_{r}^{2} = 0^{2} - 4 (4)$
36-32=4	64-64=0	0-16=-16
TWO REAL SOLUTIONS	ONE REAL SOLUTION	Two complex solutions

- 2. Give a new example of a quadratic equation in standard form that has...
 - A. Exactly two distinct real solutions.

 $f(x) = x^2 - 16$

B. Exactly one distinct real solution.

 $f(x) = x^2 + 10x + 25$

C. Exactly two complex (non-real) solutions.

 $f(x) = x^{2} + 9$

3. Suppose we have a quadratic equation $ax^2 + bx + c = 0$ so that a + c = 0. Does the quadratic equation have one solution or two distinct solutions? Are they real or complex? Explain

how you know.

- If a + c = 0, then either a = c = 0, a > 0 and c < 0, or a < 0 and c > 0.
- The definition of a quadratic polynomial requires that $a \neq 0$, so either a > 0 and c < 0or a < 0 and c > 0.
- In either case, 4ac < 0. Because b^2 is positive and 4ac is negative, we know $b^2 4ac > 0$.
- Therefore, a guadratic equation $ax^2 + bx + c = 0$ always has two distinct real solutions when a + c = 0.
- 4. Write a quadratic equation in standard form such that -5 is its only solution.

- 5. Is it possible that the quadratic equation $ax^2 + bx + c = 0$ has a positive real solution if a, b, and c are all positive real numbers?
 - A. What are the two solutions to the quadratic equation $ax^2 + bx + c = 0$?

- B. When will these solutions be positive?
- If bis positive, the second will be negative ·If-btb2-4ac >0 then Jb2-4ac >b Therefore, if all 3 coefficients are positive, then there cannot be a positive solution • SO b²-4ac>b² and -4ac>0 a or c must to $qx^2+bx+c=0$
 - 6. Is it possible that the quadratic equation $ax^2 + bx + c = 0$ has a positive real solution if *a*, *b*, and c are all negative real numbers? Explain your thinking.

No, if a, b, and c are all negative, then -a, -b, and -c are all positive. The solutions of $ax^2 + bx + c = 6$ are the same as solutions to $-ax^2-bx-c=0$ $-1(ax^{2}+bx+d=0)$ ____ No positive real solutions since all positive coefficients

Solve.

2

7.
$$2x^{2} + 8 = 0$$

 $2x^{2} + 8 = 0$
 $2(1)$
 $= \frac{-5 \pm \sqrt{25} - 48}{2}$
 $= \frac{-5 \pm \sqrt{25} -$

HONORS ALGEBRA 1

Ho Sai	mework Problem Set mple Solutions	Unit 10+ Complex Numbers Lesson 30 A Little History of Complex Numbers 759
1.	A. $x^2 - 6x + 8 = 0$ $b^2 - 4ac =$ $(-6)^2 - 4(1)(8) =$ 36 - 32 = 4 4 > 0 Two real solutions	NAME: PERIOD: DATE: Homework Problem Set DATE: 1. Determine the number and type of each solution for the following quadratic equations. A. $x^2 - 6x + 8 = 0$ B. $x^2 - 8x + 16 = 0$ C. $4x^2 + 1 = 0$
	B. $x^2 - 8x + 16 = 0$ $b^2 - 4ac$ $(-8)^2 - 4(1)(16) =$ 64 - 64 = 0 One real solution	 Give a new example of a quadratic equation in standard form that has A. Exactly two distinct real solutions.
	C. $4x^{2} + 1 = 0$ $b^{2} - 4ac =$ $0^{2} - 4(4)(1) =$ 0 - 16 =	B. Exactly one distinct real solution.
	-16 < 0 Two complex solutions	C. Exactly two complex (non-real) solutions.
2.	Answers will vary.	3. Suppose we have a quadratic equation $ax^2 + bx + c = 0$ so that $a + c = 0$. Does the quadratic equation have one solution or two distinct solutions? Are they real or complex? Explain how you know.
	Have students check each other's equations. Ask how they are able to write an equation – What did they do to create their equations?	4. Write a quadratic equation in standard form such that – 5 is its only solution.

- 3. If a + c = 0, then either a = c = 0, a > 0 and c < 0, or a < 0 and c > 0.
 - The definition of a quadratic polynomial requires that $a \neq 0$, so either a > 0 and c < 0or a < 0 and c > 0.
 - In either case, 4ac < 0. Because b^2 is positive and 4ac is negative, we know $b^2 4ac > 0$.

CC BY-NC-SA

• Therefore, a quadratic equation $ax^2 + bx + c = 0$ always has two distinct real solutions when a + c = 0.

4.
$$(x+5)^2 = 0$$

 $x^2 + 10x + 25 = 0$

Lesson 30: Module 10+:

A Little History of Complex Numbers Complex Numbers

