\qquad PERIOD: \qquad DATE: \qquad
Homework Problem Set

1. Determine the number and type of each solution for the following quadratic equations.
A. $x^{2}-6 x+8=0$
B. $x^{2}-8 x+16=0$
C. $4 x^{2}+1=0$
$b^{2}-4 a c:(-6)^{2}-4(1)(8)$
$b^{2}-4 a c:(-8)^{2}-4(1)(16)$
$b^{2}-4 a c \quad 0^{2}-4(4)(1)$

$$
36-32=4
$$

$$
64-64=0
$$

$$
0-16=-16
$$

Two ReAl solutions
ONE REAL SOLUTION
Two complex solutions
2. Give a new example of a quadratic equation in standard form that has...
A. Exactly two distinct real solutions.

$$
f(x)=x^{2}-16
$$

B. Exactly one distinct real solution.

$$
f(x)=x^{2}+10 x+25
$$

C. Exactly two complex (non-real) solutions.

$$
f(x)=x^{2}+9
$$

3. Suppose we have a quadratic equation $a x^{2}+b x+c=0$ so that $a+c=0$. Does the quadratic equation have one solution or two distinct solutions? Are they real or complex? Explain how you know.

If $a+c=0$, then either $a=c=0$, a >0 and $c<0$, or $a<0$ and $c>0$.

- The definition of a quadratic polynomial requires that $a \neq 0$, so either $a>0$ and $c<0$ or $\boldsymbol{a}<\mathbf{0}$ and $\boldsymbol{c}>\mathbf{0}$.
- In either case, $4 a c<0$. Because b^{2} is positive and $4 a c$ is negative, we know $b^{2}-4 a c>0$.
- Therefore, a quadratic equation $a x^{2}+b x+c=0$ always has two distinct real solutions when $\boldsymbol{a}+\boldsymbol{c}=\mathbf{0}$.

4. Write a quadratic equation in standard form such that -5 is its only solution.

$$
\begin{aligned}
& (x+5)^{2}=0 \\
& x^{2}+10 x+25=0
\end{aligned}
$$

5. Is it possible that the quadratic equation $a x^{2}+b x+c=0$ has a positive real solution if a, b, and c are all positive real numbers? NO
A. What are the two solutions to the quadratic equation $a x^{2}+b x+c=0$?

B. When will these solutions be positive?

If b is positive, the second will be negative

- If $-b \sqrt{b^{2}-4 a c}>0$ then $\sqrt{b^{2}-4 a c}>b$
- 50 $b^{2}-4 a c>b^{2}$ and $-4 a c>0<$

This means a orc must be negative:
6. Is it possible that the quadratic equation $a x^{2}+b x+c=0$ has a positive real solution if a, b, and c are all negative real numbers? Explain your thinking.
No, if a, b, and c are all negative, then $-a,-b$, and $-c$ are all positive.
The solutions of $a x^{2}+b x+c=0$ are the same as solutions to

$$
-a x^{2}-b x-c=0 \quad-1\left(a x^{2}+b x+c\right)=0
$$

No positive real solutions since all positive coefficients
Solve.
7. $2 x^{2}+8=0$
$2 x^{2}+8=0$
$2 x^{2}=-8$
$x^{2}=\sqrt{-4}$

$$
\pm \sqrt{4} \cdot \sqrt{-1}
$$

$$
7^{2 \cdot i}
$$

$\pm 2 i$
9. $4 x^{2}-2 x+2=0$

$$
\begin{aligned}
& \text { 8. } x^{2}+5 x+12=0 \\
& =\frac{-5 \pm \sqrt{(5)^{2}-4(1)(12)}}{2(1)}=\frac{-5 \pm \sqrt{25-48}}{2} \\
& \quad=\frac{-5 \pm \sqrt{-23}}{2}=\frac{-5 \pm i \sqrt{23}}{2}
\end{aligned}
$$

10. $x^{2}+9=0$

$$
x^{2}=-9
$$

$$
x= \pm \sqrt{-9}
$$

$x= \pm 3 i$

* Therefore, if all 3 coefficients are positive, then there cannot be a positive solution to $a x^{2}+b x+c=0$

Homework Problem Set Sample Solutions

NAME: \qquad PERIOD: \qquad DATE: \qquad

Homework Problem Set

$(-6)^{2}-4(1)(8)=$
$36-32=4$
$4>0$
Two real solutions
B. $x^{2}-8 x+16=0$
$b^{2}-4 a c$
$(-8)^{2}-4(1)(16)=$
$64-64=0$
One real solution
C. $4 x^{2}+1=0$
$b^{2}-4 a c=$
$0^{2}-4(4)(1)=$
$0-16=$
$-16<0$
Two complex solutions
2. Answers will vary.

Have students check each other's equations. Ask how they are able to write an equation - What did they do to create their equations?
2. Give a new example of a quadratic equation in standard form that has...
A. Exactly two distinct real solutions.
B. Exactly one distinct real solution.
C. Exactly two complex (non-real) solutions.
3. Suppose we have a quadratic equation $a x^{2}+b x+c=0$ so that $a+c=0$. Does the quadratic equation have one solution or two distinct solutions? Are they real or complex? Explain how you know.
4. Write a quadratic equation in standard form such that -5 is its only solution.
A. $x^{2}-6 x+8=0$
B. $x^{2}-8 x+16=0$
C. $4 x^{2}+1=0$
3. If $a+c=0$, then either $a=c=0$, a >0 and $c<0$, or $a<0$ and $c>0$.

- The definition of a quadratic polynomial requires that $\boldsymbol{a} \neq \mathbf{0}$, so either $\boldsymbol{a}>\mathbf{0}$ and $\boldsymbol{c}<\mathbf{0}$ or $\boldsymbol{a}<\mathbf{0}$ and $\boldsymbol{c}>\mathbf{0}$.
- In either case, $4 a c<0$. Because b^{2} is positive and $4 a c$ is negative, we know $b^{2}-4 a c>0$.
- Therefore, a quadratic equation $\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b x}+\boldsymbol{c}=\mathbf{0}$ always has two distinct real solutions when $\boldsymbol{a}+\boldsymbol{c}=\mathbf{0}$.

4. $(x+5)^{2}=0$
$x^{2}+10 x+25=0$
