NAME:

PERIOD: _____ DATE: __

Homework Problem Set

Use an area model to compute the following products:

1. (4x + 2)(2x + 3)

2. (10x + 1)(x + 1)

Hint: For Problems 3 and 4, use 0-terms as shown in Exercise 13.

3. $(3x^2 + 2)(2x + 3)$

4. $(2x^2 + 10x)(x^2 + 1)$

 $2x^{4} + 10x^{3} + 2x^{2} + 10x$

7. Multiply the polynomials using the distributive property: $(3x^2 + x - 1)(x^4 - 2x + 1)$.

8. Sammy wrote a polynomial using only one variable, *x*, of degree 3. Myisha wrote a polynomial in the same variable of degree 5. What can you say about the degree of the product of Sammy's and Myisha's polynomials?

$$(x^{3}+...)(x^{5}+...) = x^{8}+...$$

The degree of the polynomial would be 8.

Use either method to write each of the following expressions as the sum of monomials.

9. 3a(4 + a) $12a + 3a^{2}$ $3a^{2} + 12a$ 10. x(x + 2) + 1 $x^{2} + 2x + 1$ $3a^{2} + 12a$

11.
$$(x - 4)(x + 5)$$

 $x^{2}+5x-4x-20$
 $x^{3}+x-20$
 $(z^{3}+2z-3z^{2}-)$
 $(z^{3}-3z^{2}+2z-)$

13.
$$(10w - 1)(10w + 1)$$

 $14. (-5w - 3)w^{2}$
 $100w^{2} + 10w - 10w -$

15.
$$(x^{2} - x + 1)(x - 1)$$

 $x^{3} - x^{3} + 1$
 $x^{3} - x^{3} - x^{3} + x$
 $-x^{2} + x - 1 - 1$
 $-x^{2} - x + 1$

 $X^{3}-2x^{2}+2x-1$

18.
$$(w + 1)(w^{4} - w^{3} + w^{2} - w + 1)$$

 $\omega (\omega^{4} - \omega^{3} + \omega^{2} - \omega + 1) = \omega^{5} + \omega^{3} + \omega^{2} + \omega^{4} + 1$
 $+ 1 | (\omega^{4} - \omega^{3} + \omega^{2} - \omega + 1) = \omega^{4} - \omega^{5} + \omega^{2} + \omega^{4} + 1$
 $\omega^{5} + 1$

Be careful here!
You'll need to
multiply each term
separately. Then
combine like terms.
20.
$$3xz(9xy + z) - 2yz(x + y - z)$$

T

 $27x^2y^2+3xz^2-2xy^2+2y^2+2y^2$

19.
$$z(2z + 1)(3z - 2)$$

 $(2z^{2}+Z)(3z-2)$
 $(0z^{3}-4z^{2}+3z^{2}-2z)$
 $(0z^{3}-z^{2}-2z)$

21. Use the distributive property (and your wits!) to write each of the following expressions as a sum of monomials. If the resulting polynomial is in one variable, write the polynomial in standard form.

E. What do you notice about all of these problems? Is there a pattern?

17A is the pattern

22. Andrew started to multiply the polynomials, (x - 1) and $(x^3 + 6x^2 - 5)$, using the distributive property. Examine Andrew's work and then complete the problem.

$$x \cdot (x^3 + 6x^2 - 5) - 1(x^3 + 6x^2 - 5) =$$

 $x^{4}+6x^{3}-5x-x^{3}-6x^{2}+5=$ + + + + + + + $x^{4} + 5x^{3} - 6x^{2} - 5x + 5$

23. Leela is convinced that $(a + b)^2 = a^2 + b^2$. Use an area model to explain to her why she is wrong.

•

 $a^2 + 2ab + b^2$

24. Sara started to use the area model to multiply (x - 2) by $(x^2 - 1)$. Explain where Sara went wrong in her area model. What could she have done to prevent this mistake?

Sara should have used a placeholder in the х³ $-2x^{2}x^{2}$ X³ 2 -1 -x (pression -3x³ 2 ⇒ cannot be Combined (not like tenns) placeholder

Challenge Problems

25. $(x + y + z)^2$

(x	+y+ ×	·z)(4	x+L z	j+ Z)
	xa	хy	XZ	×
	ху	y	yz	y
	χz	yz	Z	Z

26. $(x + 1 + z)^{2}$ (x + 1 + z) (x + 1 + 2) $X^{2} + x + x^{2}$ X + 1 + zX + 1 + z

 $x^{2}+\lambda xy+\lambda xz+\lambda yz+y^{2}+z^{2}$

27. The expression $10x^2 + 6x^3$ is the result of applying the distributive property to the expression $2x^2(5 + 3x)$. It is also the result of applying the distributive property to $2(5x^2 + 3x^3)$ or to $x(10x + 6x^2)$, for example, or even to $1 \cdot (10x^2 + 6x^3)$. For (A) to (E) below, write down an expression such that if you applied the distributive property to your expression, it would give the result presented. Give interesting answers!

Example: $10x^2 + 6x^3$ can be written as: $2x^2(5 + 3x)$ A. $6a + 14a^2$ can be written as:

$$2a(3+7a)$$

B. $2x^4 + 2x^5 + 2x^{10}$ can be written as:

C. $6z^2 - 15z$ can be written as:

 $2x^{4}(1+x+x^{6})$

D. $42w^3 - 14w + 77w^5$ can be written as:

 $7\omega(6\omega^{2}-2+11\omega^{4})$

3z (2z-5)

The
$$z^2(a + b) + z^3(a + b)$$
 can be written as:

Z((a+b)+z(a+b))