Module 2-T1L1---Post Secondary Proportions

Name: \qquad Date: \qquad Per. AB CD E F

	$\frac{7}{16}=\frac{x}{48}$	$\frac{10}{p}=1$	$250=\frac{1000}{q}$
Warm-up: Solve each proportion			

Proportional relationships are always:

Characteristics
of Proportional Relationships

How to Find the Constant of Proportionality (k)

1. Linear (straight line/have a constant rate of change)
2. Passes through the \qquad origin $(0,0)$
3. The equation of a proportional relationship is $y=k X$ where k represents the constant of proportionality.

$$
K=\text { constant of proportionalif }
$$

GRAPH

$$
y=5 x
$$

1. Choose 2 points from the line.
2. Find the $\frac{y}{x}=\frac{\text { how much up or down }}{\text { how much right or left }} \downarrow$
3. Simplify if possible.

$$
\uparrow_{\rightarrow} \frac{2 \div 2}{4 \div 2}=\frac{1}{2}
$$

CAUTION: Make sure to read intervals appropriately

1. Graphs
2. Equations
3. Tables

Module 2-TlL1---Post Secondary Proportions

Module 2-T1L1---Post Secondary Proportions

Module 2-T1L1---Post Secondary Proportions

Activity 1.2 Warm-up	Identify the constant of proportionality for each line $\mathrm{A}-\frac{40}{2}=\frac{20}{1}$ c $\frac{25}{10 \div 5} \div \frac{5}{2}$ B hone D $\frac{10 \div 2}{12 \div 2}=\frac{5}{6}$
Comparing Ratios and Graphs	Examine the graph below. What is the major difference between the two lines on the graph?
	Use the graph on the right to answer the following questions.
	Which line represents males? $\frac{y 2}{\text { know? Label the lines on the graph. }}$ females? Y $_{1}$ How do you
	The ratio of the number of students who enjoy music to the total number of students is slightly more than the ratio of female students to the total number of students. Draw a line that represnts this and label it y_{3} or music lovers.
	The ratio of students who work full time to the total students is less than the number of females enrolled to total students, but more than the rato of males enrolled to total students. Draw a line that represents this and label it y_{4} or full-time.

Module 2-T1L1---Post Secondary Proportions

Activity 1.3 Comparing Speeds	Daisa		Tymar		
	Daisa attends college in another state. During summer break, she drives home from college to visit her family and friends. Dhe decides to keep track of the time it takes her to drive home from school. She records her distance after various numbers of hours. Her data is shown in the table below. Daisa's Drive Home		Tymar goes to school with Daisy. He also drives home, but takes a different route. His trip is shown in the graph.	Alisha also goes to the same school. She offers to drive Daisa and Tymar home to save on gas money. When asked how	
				fast she drives, she says the distance traveled, y, for	
Time What does the point $(0,0)$ mean for the context of this problem?				the time, x, can be expressed as $y=57 x$	
	$\begin{array}{\|c} \hline \text { Time } \\ \text { (hours) } \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Distance } \\ \text { (miles) } \end{array} \\ \hline \end{array}$			
	3	180			
	2	120			
	1.5	90			
	2.5	150			
Are these relationships proportional? How do you know?					
Write a ratio for distance to time. (how fast is each person driving?)					
Compare their speeds.	Rank the fri	ends in order from	m slowest driver to fastest driver		

Module 2-T1L1---Post Secondary Proportions

Three toy stores review their inventory to represent the relationship between the total number of stuffed animals sold to the total number of toys sold.

$$
\frac{\text { Total Stuffed Animals }}{\text { Total Toys }}
$$

Each toy store represented their relationship in different ways. Find the constant of proportionality for each store.

Which toy store had the greatest ratio (constant of proportionality) of stuffed animals to total toys?

$$
\frac{3}{5}=0.6 \quad \frac{1}{2}=0.5
$$

$$
k=\frac{2}{3}
$$

Total Number of Toys Sold	Number of Stuffed Animals Sold
0	0
12	8
54	36
102	68
156	104

e had the smallest ratio (constant of proportionality) of stuffed animals to total toys?

$$
\text { Toy soldiers }\left(\frac{1}{2}\right)
$$

