Module 2-T1L2---Similar Triangles and Steepness

Name:
Date:
Per. A B C D E F

The greater the unit rate, the
the line.
Write each ratio as a unit rate.

Use these unit rates to rank the triangles from steepest to least steep. Was your prediction correct?

Module 2-T1L2---Similar Triangles and Steepness

	JACK AND JILL WALK 6 YARDS EVERY 3 SECONDS.			
Activity 2.1 Jack and Jill walk up a hill from their home to the bus stop.	Write a ratio to re the rate shown ab	present ove.	Write an equation to represent the distance, d, Jack and Jill walked over time, t.	Does this situation represent a proportional relationship? YES NO How do you know? Identify the constant of proportionality.
JACK AND JILL WALK 6 YARDS EVERY 3 SECONDS.	Complete the table. Graph the points and draw a line to show the time they walked and their distance from home. Using the line created on the graph, estimate How far Jack and Jill will be from home after... 2 seconds? \qquad 5.5 seconds? \qquad By looking at the graph, explain how you can tell that Jack and Jill's walk to the bus stop represents a proportional relationship.			

Module 2-T1L2---Similar Triangles and Steepness

Unit Rate: How many yards per second are Jack and Jill walking?	What is the unit rate of Jack and Jill? How can you find it from the table and the graph. Table Graph What does the unit rate mean in the context of this situation? True or False: The graph goes up from left to right because jack and Jill are walking up hill?
Rate of Change	The Rate of change for a situation describes the amount that the dependent variable changes compared with the amount that the independent variable changes.
	Identiy the independent and dependent variables for the Jack and Jill scenario. What is the rate of change?
	If Jack and Jill walked faster, 3 yards per second, what would the graph look like? Show on the graph how the line would be affected. If Jack and Jill walked slower, 1 yard per second, what would the graph look like? Show on the graph how the line would be affected.

Module 2-T1L2---Similar Triangles and Steepness

Module 2-T1L2---Similar Triangles and Steepness

In short....	Because the Jack and Jill situation represented a proportional relationship, the rate of change can also be called the \qquad of \qquad The steepness of the line in the triangle example remained constant between the two points. In any linear relationship, you can use the \qquad to describe the direction and steepness of a line. The slope is another word for rate of change.	
Summary What I the difference between all of these terms?	CONSTANT OF PROPORTIONALITY	SLOPE
	Uses the letter k	Uses the letter m
	Find it by doing $\frac{y}{x}$	Find it by doing $\frac{y}{x}$
	Only works when the relationship is proportional. Must pass through the origin $(0,0)$ Linear	Tells you the steepness and direction of the line. If the slope is positive, the line goes up. If the slope is negative, the line goes down.
	Use the equation $\mathrm{y}=\mathrm{kx}$ (where k is represents the constat of proportionality)	```Use the equation \(y=m x+b\) m=slope \(b=\) beginning of the line (\(y\)-intercept)```

Module 2-T1L2---Similar Triangles and Steepness

Activity 2.3

Equation for a Line not Through the Origin

When a line is translated vertically by b units, we can write the equation in the form:
The line to the right represents the line that we
have been using to show Jack and Jill's walking
rate. The graph shows the line: $y=\frac{6}{3} x$ or
$y=2 x$, which represents their path towards
the bus stop.
Jack and Jill's Aunt Mary lives next door. She
lives 4 yards from their home closer to the bus
stop. How will the graph of the line change if
they started walking at the same rate (2 yard
per second)?

Time (seconds)	0	1	2	3	4	5
Distance from Home (yards)						

The two lines are \qquad . Why do you
think that is?

How will the slopes of the two lines compare? Why?
(How fast did they walk from home?
How fast did they walk from Mary's)

How will this affect the graph of the line?
How will this affect the graph of the new line?

Draw a line on the graph that represents the walk from their Aunt Mary's house to the bus stop.

Does the walk from their Aunt Mary's house represent a proportional relationship? Why or why not?

How does the translation of the starting the line 4 units higher affect the coordinates of the new line? Complete the table to help.

How does this translation affect the slope?

Write an equation that represents the old line and another euqation for the new line. How are the equations the same? Different?

OLD LINE:
NEW LINE:

Time walking (second s)	OLD LINE distance (yards)	NEW LINE Distance (yards)
0		
1		
2		
2.5		

Module 2-T1L2---Similar Triangles and Steepness

Activity 2.4 Negative Unit Rate	Jack and Jill are walking back hoe from the bus stop which is 30 yards away from their house. They walk at the same rate, 6 yards every 3 seconds. Complete the table about each of the graphs.	
Graphs	Walking to the Bus Stop	Walking Home from the Bus Stop
Proportional or NonProportional Explain		
Slope of the line Positive or Negative? Why?		
Choose 2 points from each line, and draw a right triangle. It does not matter which 2 points you choose.		
Write a ratio that represents the height over the base of your triangle.		
Simplify your ratio from above		
The slope of the line in simplified form is...		
How is the slope different thatn the simplified ratio?		
Write an equation that represents each line.		

Module 2-T1L2---Similar Triangles and Steepness

Activity 2.5 Describing Linear Equations Proportional Versus NonProportional Relationships	Proportional Relationships	Non-Proportional Reltionships
	LINEAR	LINEAR
	Passes through_____	Doesn't pass through _
	$y=m x$	$y=m x+b$
Consider each graph shown. *Determine wheter the graph represents a proprtional or non-proportional relationship. *Write an equation in the form $y=m x$ or $y=m x+b$ to represent the relationship.		
Comparing Proportional and Nonproportional relationships.	a. Fruit Delivery Proportional or Non-proportional Slope (m)= \qquad y-intercept (b)= \qquad Equation: \qquad Slope represents: \qquad	b. Road Trip Proportional or Non-proportional Slope (m)= \qquad y-intercept (b)= \qquad Equation: \qquad Slope represents: \qquad

