MODULE 2, TOPIC 1 TEST REVIEW

1. Use the following graph to answer the questions below:

2. When graphed, which equation will have the smallest rate of change? Explain your answer choice.

a.
$$y = 10x$$

b.
$$y=7x$$

c.
$$y = 0.8x$$

d.
$$y = 0.4x$$

I know this because

3. Find the rate of change shown in each graph.

b.

c.

Rate of Change:

Rate of Change:

Rate of Change:

4. What is the equation of the line shown below?

5. Which of the following equations represents a proportional relationship? Explain your answer.

a.
$$y = 2x + 7$$

b.
$$y = 4x$$

c.
$$y = 4x + 2$$

d.
$$y = x + 1$$

How do you know?

6. Which line on the graph has the greatest rate of change? Explain your answer.

$$Y_1$$
 or Y_2

I know this because

7. Using the graph shown, which represents the slope when using the idea of similar triangles? Select all that apply.

a.
$$\frac{1}{2}$$

b.
$$\frac{2}{4}$$

c.
$$-\frac{1}{2}$$

d.
$$-\frac{2}{4}$$

8. For the following questions, answer "T" for true and "F" for false.

___ a. A proportional relationship always goes through the origin (0,0).

_____ b. Linear relationships are always proportional.

____ c. Proportional relationships are non-linear.

____ d. Non-proportional relationships are always non-linear.

9. Which statement correctly describes the relationship shown in the graph?

- a. The relationship is linear and non-proportional.
- b. The relationship is linear and proportional.
- c. The relationship is non-linear and non-proportional.
- d. The relationship is non-linear and proportional.

10. Use the graph below to answer the following questions:

- a. Is the graph proportional or non-proportional?
- b. How can you tell?
- c. What is the equation of the line?
- 11. The line shown on the graph is represented by y = x.
 - a. Create another line that is translated **down** 1 unit from y = x.
 - b. What is the equation of the line from "a"?
 - c. Create another line that is translated **up** 2 units from y = x.
 - d. What is the equation of the line from "c"?

