\qquad
\qquad

MODULE 2, TOPIC 1 TEST REVIEW

1. Use the following graph to answer the questions below:
a. Is the relationship proportional or non-proportional?
b. How can you tell? \qquad
\qquad
\qquad .

2. When graphed, which equation will have the smallest rate of change? Explain your answer choice.
a. $y=10 x$
b. $y=7 x$
c. $y=0.8 x$
d. $y=0.4 x$

I know this because \qquad
\qquad .
3. Find the rate of change shown in each graph.
a.

b.

c.

Rate of Change: \qquad Rate of Change: \qquad Rate of Change: \qquad
4. What is the equation of the line shown below?

\qquad
5. Which of the following equations represents a proportional relationship? Explain your answer.
a. $y=2 x+7$
b. $y=4 x$
c. $y=4 x+2$
d. $y=x+1$

How do you know? \qquad
\qquad .
6. Which line on the graph has the greatest rate of change? Explain your answer.

\mathbf{Y}_{1} or \mathbf{Y}_{2}
I know this because \qquad
\qquad .
7. Using the graph shown, which represents the slope when using the idea of similar triangles? Select all that apply.

a. $\frac{1}{2}$
b. $\frac{2}{4}$
c. $-\frac{1}{2}$
d. $-\frac{2}{4}$
8. For the following questions, answer " T " for true and " F " for false.
\qquad a. A proportional relationship always goes through the origin $(0,0)$.
\qquad b. Linear relationships are always proportional.
\qquad c. Proportional relationships are non-linear.
\qquad d. Non-proportional relationships are always non-linear.
9. Which statement correctly describes the relationship shown in the graph?

a. The relationship is linear and non-proportional.
b. The relationship is linear and proportional.
c. The relationship is non-linear and non-proportional.
d. The relationship is non-linear and proportional.
10. Use the graph below to answer the following questions:

a. Is the graph proportional or non-proportional? \qquad
b. How can you tell? \qquad
\qquad .
c. What is the equation of the line? \qquad
11. The line shown on the graph is represented by $y=x$.
a. Create another line that is translated down 1 unit from $y=x$.
b. What is the equation of the line from "a"?
\qquad
c. Create another line that is translated up 2 units from $\mathrm{y}=\mathrm{x}$.
d. What is the equation of the line from " c "?

