\qquad Period: A B C D E F Date: \qquad Assessment Review: Module 1 Topic 2 - Similarity

1	Triangle $D E F$ has vertices $D(-4,1), E(2,3)$, and $F(2,1)$ and is dilated by a factor of 3 using the origin as the point of dilation. The dilated triangle is named $\Delta D^{\prime} E^{\prime} F^{\prime}$. What are the coordinates of the vertices of the resulting triangle? Write the rule for this dilation below. Rule: (X, Y)---->	2	Trapezoid ABCD is dilated to form trapezoid A'B'C'D'. Without calculating the scale factor, explain if the dilation is an enlargement or reduction and how you know this. Circle one: Enlargement I know this because \qquad
3	Describe a sequence of transformations that exhibits the similarity between the pair of figures shown. Remember to be specific. 1) \qquad \qquad 2) \qquad	4	Triangle $A B C$ is dilated to produce triangle $A^{\prime} B^{\prime} C^{\prime}$ with scale factor $3 / 4$. Which describes the relationship between the two triangles. Circle one below: a. $\triangle A^{\prime} B^{\prime} C^{\prime}$ is an enlargement of $\triangle A B C$. b. $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a reduction of $\triangle A B C$. c. $\triangle A^{\prime} B^{\prime} C^{\prime} \cong \triangle A B C$ d. $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a mirror image of $\triangle A B C$. Write the rule for the dilation described above: Rule: (X, Y)----> \qquad

5	Which must be true of a scale factor of a dilation if the image is smaller than the original figure? 6 Triangle $F U N$, with vertices $F(-6,9), U(0,-6)$, and $N(-3,-12)$ was dilated to form triangle $P E T$ with vertices $P(-4,6), E(0,-4)$, and $T(-2,-8)$. a. The scale factor is negative. b. The scale factor is between -1 and 0. c. The scale factor is between 0 and 1. d. The scale factor is positive. What is the scale factor for this dilation? Scale factor: -_ This dilation is a(n): Circle one: Enlargement Reduction
7	Triangle ABC has vertices with coordinates $\mathrm{A}(-2,-2), \mathrm{B}(-6,-2)$, and $\mathrm{C}(-6,2)$. a. Dilate $\triangle \mathrm{ABC}$ on the coordinate plane using the origin as the center of dilation and a scale factor of $1 / 2$ to form $\Delta A^{\prime} B^{\prime} C^{\prime}$. b. What are the coordinates of $\mathrm{A}^{\prime}, \mathrm{B}^{\prime}$, and C^{\prime} ? A' \qquad B' \qquad C' \qquad c. How did you determine the coordinates of the vertices of the dilated image? \qquad \qquad \qquad d. Is the dilation an enlargement or a reduction? Explain your reasoning. \qquad \qquad \qquad e. What is the relationship between $\triangle A B C$ and $\triangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$?
8	Determine whether the statements are sometimes, always, or never true. a. The angles of dilated figures are congruent to the original figure. \qquad b. The shape of dilated figures are the same. \qquad c. The size of dilated figures are the same. \qquad d. Dilations can be enlargements of the original figure. \qquad e. Dilations can be reductions of the original figure. \qquad

9	A shape is dilated with the center of dilation as the origin. Point M is on the shape and M^{\prime} is the corresponding point on the image of the dilation. Point M is at $(-3,5)$ and M^{\prime} is $(-6,10)$. What is the scale factor and how do you know? $M(-3,5)--->M^{\prime}(-6,10)$ Scale factor: \qquad This dilation is $\mathrm{a}(\mathrm{n})$: Circle one: Enlargement Reduction
10	Parallelogram ABCD is transformed to create parallelogram A' ${ }^{\prime} C^{\prime} D^{\prime}$. Which of the following shows the sequence of transformations needed to create $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. A. Dilation by a factor of $\frac{3}{2}$ about the origin and a translation of 3 units right. B. Dilation by a factor of $\frac{2}{3}$ about the origin and a translation 3 units right. C. Dilation by a factor of $\frac{3}{2}$ about the origin and a translation 3 units left. D. Dilation by a factor of $\frac{2}{3}$ about the origin and a translation 3 units left.

