Name: \qquad Period: \qquad

MODULE 1- TOPIC 1 TRANFORMATIONS REVIEW

1. Determine which transformation represents each scenario below: Translation, Rotation, or Reflection.
A. Looking into a lake and seeing your image in the lake. \qquad
B. A gymnast doing a cartwheel. \qquad
C. A person rides up an elevator, gets off and walks left towards his office. \qquad
2. Given coordinates of point $A(-9,-3)$, what would A^{\prime} be if translated using the following rule, $(x+3, y-7)$. A^{\prime} \qquad
3. Using the pre- image A , match the transformations that occurred to get to the other polygons D, E, and F . Some of the transformations will not be used.
\qquad Reflection over the x-axis
\qquad Reflection over the y-axis
\qquad Rotate 90° counter clockwise
\qquad Rotate 90° clockwise
\qquad Translate 4 units left and down 2 units.
\qquad Translate 4 units down and left 2 units.

4. Sammy drew a triangle with coordinates $(5,1),(8,4)$ and $(2,3)$. Then she drew another triangle with coordinates ($5,-1$), ($8,-4$) and ($2,-3$). What transformation was used?

5. Complete each statement. Use \#'s/right/left to fill in the blanks.

A 90° clockwise rotation is \qquad turn to the \qquad .

A 90° counter clockwise rotation is \qquad turn to the \qquad .

A 180° rotation is \qquad turns.

A 270° clockwise rotation is \qquad turns to the \qquad .

A 270° counter clockwise rotation is \qquad turns to the \qquad .

A rule to find the coordinates easily without graphing for a 180° rotation is (,). So if the point $(-2,5)$ was rotated 180°, the coordinates of the image would be (,).
6. Describe in words what the following rules are for the following translations.
A. $(x, y-5)$
B. $(x+5, y)$
C. $(x-1, y+7)$
7. Given the following coordinate point $J(8,7)$, graph the following:
A. Translate using the rule $(x-10, y-6)$ and label it A
B. Reflect J over the x-axis and label it B.
C. Reflect J over the y-axis and label C.
D. Rotate $\mathrm{J} 90^{\circ}$ clockwise and label it D.
E. Rotate J 180° and label it E .
F. Rotate J 90° counter clockwise and label it F .
G. Translate up 2 and right 1 and label it G.

8. Which figure would be the image if pre-image M was reflected over the x - axis and then translated 2 units to the right? \qquad
Which figure would be the image if pre-image J was rotated 90° clockwise and then translated down 2 units? \qquad

9. Which transformations were used to create image Q from image P ?

10. Given the picture below, use patty paper to determine if each is a reflection, rotation, or translation.

11. Connor drew a triangle with coordinates $A(1,1), B(3,4)$ and $C(3,1)$. Then he drew another triangle with coordinates $A^{\prime}(-3,6), B^{\prime}(-1,9)$ and $C^{\prime}(-1,6)$. What transformation was used?

12-14: Using the image to the right, answer the following questions:
12. Using figure A, determine the transformation that occurred to get from A to image B.
A. Reflection of the y-axis, slide left 3 units.
B. Reflection over the x-axis, slide 3 units right.
C. Reflection of the y-axis, slide right 3 units.
D. Reflection over the x-axis, slide 3 units right.
13. Using figure B, determine the transformation that occurred to get from B to image C.
A. Rotate 90° clockwise about the origin, translate down 1 and left 8 units
B. Rotate 90° counter clockwise about the origin, translate right 1 unit and up 5 units.
C. Reflect over the y-axis, Rotate 90° counter clockwise about the origin, and slide down one unit.

14. Using figure B, determine the transformation that occurred to get from B to image D.
15. For all rigid motions (including translations, rotations, and reflections), are the following statements True or False about the pre-image and the image?
\qquad Side lengths are congruent
\qquad Angle measures are congruent
\qquad The two figures will have the same size
\qquad The two figures will have the same shape
\qquad The two figures will be in the same location
\qquad The two figures are congruent
\qquad Corresponding line segments are congruent

16. Complete each statement. Use \#'s/right/left to fill in the blanks.

A 90° clockwise rotation is the same as a \qquad .

A 90° counter clockwise rotation is the same as a \qquad .

A 180° counter clock wise rotation is the same as \qquad
A 270° clockwise rotation is the same as a \qquad .

A 270° counter clockwise rotation is is the same as a \qquad .
17. Given the triangle PQR below answers the following questions on the right.

A. If triangle $P Q R$ is translated 2 units to the right to form P'Q'R', how are the values in the ordered pairs affected by the translation?
B. Write the rule for P'Q'R' (x, y).
C. If triangle PQR is translated 4 units up to form P "Q"R", how are the values in the ordered pairs affected by the translation?
D. Write the rule for P"Q"R" (x, y).
18. Which of the pictures are congruent to the picture shown? Justify your response.

Picture 1

Picture 2

Picture 3

Picture 4
19. A.) Reflect trapezoid JKLM over the y-axis.

B.) If trapezoid JKLM is reflected over the y-axis, how are the values of the ordered pairs affected by the translation?

