Name: \qquad 9 Date: \qquad Period: AB C D E F

Module 1: Topic 2 Lesson 3 Assignment-From Here to There

VOCABULARY ----For questions 1-2, complete the following sentences with the correct term. Use your book to help you.

1. When you dilate a figure, you create a Similar_ figure. When two figures are similar, the ratios of their corresponding side lengths are equal. (page M1-117)
2. Figures are \qquad if they have their corresponding side lengths and corresponding angles are the same measure.
PRACTICE----For questions 1-2, Verify that the two figures are similar by describing a dilation that maps one
figure onto the other. Be to include the scale factor, and write corresponding sides used to determine scale factor.
3.

$\triangle A B C$ is mapped onto $\triangle D E F$

This is a/an:
Enlargement or Reduction I know this because: The new figure is
bigger than the original Scale Factor: \qquad
2.

HEXAGON ABCDEF is mapped onto HEXAGON GHIJKL

This is a/an:

I know this because: The new figure is smaller than the original.

Scale Factor: $\quad \frac{9}{12}=\frac{3}{4}$
3. How do can you tell that these two figures are not similar figures?

The two figures have different points for the center of dilation.
4. Use the coordinates of the pereimage to determine how the triangle was dilated.

Pre-image	Image
$X(7,2)$	$X^{\prime}(35,10)$
$Y(3,-5)$	$Y^{\prime}(15,-25)$
$Z(-6,0)$	$Z^{\prime}(-30,0)$

Scale Factor: \qquad
5. Use the coordinates of the pre-image to determine how the triangle was dilated.

Pre-image	Image
$A(15,3)$	$A^{\prime}(5,1)$
$B(-21,0) \div 3 B^{\prime}(-7,0)$	
$C(-6,18)$	$C^{\prime}(-2,6)$
Scale Factor:	$\frac{1}{3}$

Name: \qquad Date: \qquad Period: A B C D E F

\#6-9 Verify that the figures are similar by describing a sequence of transformations that map Triangle ABC onto Triangle DEF. Be specific.

6.		- Reflect over y-axis - Dilate by a scale factor of $\frac{1}{4}$		7. - Rotate 180 - Dilate by a scale factor of $\frac{3}{2}$			
8.		- Trans down - Dilate factor	y a scale $\text { f } \frac{1}{2}$	9.		- Rotat counter - Dilate scale	90° ockwise by a ctor of 2
REVIEW-- Without graphing, give the coordinates of $A^{\prime} B^{\prime} C^{\prime}$ after a transformation of $A B C$ with the coordinate $\mathrm{A}(6,-3), \mathrm{B}(9,5)$, and $\mathbf{C}(5,6)$. Use the origin as the center of dilation or rotation, as needed.							
a. Dilate $\Delta A B C$ by a scale factor of $1 / 3$.		b. Dilate $\triangle A B C$ by a scale factor of 4.		c. Rotate $\triangle \mathrm{ABC} 180$ degrees.		$d \Delta$ Rotate $\triangle A B C 90$ degrees counterclockwise.	
Pre-Image	Image	Pre-Image	Image	Pre-Image	Image	Pre-Image	Image
A ($6,-3$)	$A^{\prime}(2,-1)$	A ($6,-3$)	$A^{\prime}(24,-12)$	A ($6,-3$)	$A^{\prime}(-6,3)$	A ($6,-3$)	$A^{\prime}(3,6)$
B $(9,5)$	$B^{\prime}\left(3, \frac{5}{3}\right)$	B $(9,5)$	$B^{\prime}(36,20)$	B $(9,5)$	$B^{\prime}(-9,-5)$	B $(9,5)$	$B^{\prime}(-5,9)$
C $(5,6)$	C' $\left(\frac{5}{3}, 2\right)$	C $(5,6)$	$C^{\prime}(20,24)$	C $(5,6)$	$C^{\prime}(-5,-6)$	C (5,6$)$	$C^{\prime}(-6,5)$
Rule: $(x, y) \rightarrow\left(\frac{x}{3}, \frac{y}{5}\right)$		Rule: $(x, y) \rightarrow(4 x, 4 y)$		Rule: $(x, y) \rightarrow(-x,-y)$		Rule: $(x, y) \rightarrow(-y, x)$	
e. Rotate $\Delta \mathrm{ABC} 90$ degrees clockwise.		f. Reflect $\Delta \mathrm{ABC}$ across the x -axis.		g. Reflect $\triangle \mathrm{ABC}$ across the y-axis.		$\mathrm{h} \Delta$ Translate $\Delta A B C(x+3, y-4)$	
Pre-Image	Image	Pre-Image	Image	Pre-Image	Image	Pre-Image	Image
A ($6,-3$)	$A^{\prime}(-3,-6)$	A ($6,-3$)	$A^{\prime}(6,3)$	A ($6,-3$)	$A^{\prime}(-6,-3)$	A ($6,-3$)	$A^{\prime}(9,-7)$
B $(9,5)$	$B^{\prime}(5,-9)$	B $(9,5)$	$B^{\prime}(9,-5)$	B $(9,5)$	$B^{\prime}(-9,5)$	B $(9,5)$	$B^{\prime}(12,1)$
C $(5,6)$	$C^{\prime}(6,5)$	C $(5,6)$	$C^{\prime}(5,-6)$	C $(5,6)$	$C^{\prime}(-5,6)$	C $(5,6)$	$C^{\prime}(8,2)$
Rule: $(x, y) \rightarrow(y,-x)$		Rule: $(x, y) \rightarrow(x,-y)$		$\text { Rule: }(x, y) \rightarrow(-x, y)$		Rule: $(x, y) \rightarrow(x+3, y$	

