Solving Linear Equations NOTES

NAME \qquad DATE \qquad PeriodABCDEF

	To solve a Two-Step Equita 1. Draw a line through 2. Undo the Addition/S 3. Undo the Multiplicat	alance. constant term) he coefficient)
	$4 x-8=16$	$\frac{y}{12}-5=11$
TworsteraEquations	$-61=7 y-26$	$4-3 \mathrm{n}=43$
	$\frac{x}{3}+5=-4$	$23-\mathrm{x}=13$
	$3 x+6=-18$	$12=-2 x+10$
	$14=6-2 x$	$14=3-x$
	$\frac{x}{4}+10=1$	$\frac{-x}{2}=-6$

I can solve multi-step equations with variables on one side of the equation.

Combining Lile Terms (see Slide-Share presentation)	"Like terms" are terms that contain the same letter variables which are raised to the same exact powers. Only the first number "coefficients" of the terms are different. Example: Non-Example					
	Consider the following take-away meal: $\sum 2+\\| \\|+\square+2$ Write an equation to show your meal order, and then combine like terms.					
	$7 x+2$	$2 x+9$				
	Solve for the variable in each of the following equations					
	$7 x+2 x$	+9 $=45$	$x-5-$	$=-48$		
	$12=$	$8 x-10$	$9 x+12-2$	$7 x=-21$		
Distributive	You can use the distributive property to simplify expressions. To distribute, multiply the term on the outside of the parentheses to both terms on the inside of parentheses.					
Pusterty	$4(x+2)$	$3(x-5)$	$-7(2 x-5)$	$8(2 x-5)$		

I can solve equatio	with variables on both sides	ual sign.
Acturity OnE Solving Equations with variables	- How many blocks are in one bag? - Write the original problem as an equation, using a variable. - Solve the equation you wrote algebraically.	
	- How many blocks are in one bag? - Write the original problem as an equation, using a variable. - Solve the equation you wrote algebraically.	
	- How many blocks are in one bag? - Write the original problem as an equation, using a variable. - Solve the equation you wrote algebraically.	
SOLVING MULTI- STEP EQUATIONS	STEPS: 1. Move all of the variables to the same side (inverse operations) 2. Add or subtract the constant to get the term with the variable alone. 3. Multiply or divide to finish solving.	
	$x-6=5 x+10$	$2 x-7=-5 x+14$

How are Teddy and Topher's solution strategies the same? How are they Different?

$\bar{\square}$
Which strategy do
you prefer? Why?
\square

Consider the equation: $5 x+3=2 x+5$
Teddy and Topher each solved the equation in a different way. Analyze their solution strategies.

Teddy

$$
\begin{aligned}
5 x+3 & =2 x+5 \\
-5 x & -5 x \\
\hline 3 & =-3 x+5 \\
-5 & -5 \\
\hline \frac{-2}{-3} & =\frac{-3 x}{-3} \\
\frac{2}{3} & =x \\
x & =\frac{2}{3}
\end{aligned}
$$

$$
\begin{array}{cr}
5 x+3= & 2 x+5 \\
-2 x \quad-2 x \\
\hline 3 x+3= & 5 \\
-3 & -3 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
3 x=2 \\
x=\frac{2}{3}
\end{array}
$$

Use multi-step equations to solve for the variable. What is the value of the missing angle?

Application to Angles on a Transiersal DON'T FORGET... Alternate Interior Angles are Congruent Corresponding Angles are Congruent		

