Three Forms of Quadratic Functions

If your equation is in \qquad form, how do you find the ? \qquad	$\begin{gathered} \text { VERTEX FORM } \\ y=a(x-h)^{2}+\boldsymbol{k} \end{gathered}$	STANDARD FORM $y=a x^{2}+b x+c$	$\begin{gathered} \text { FACTORED FORM } \\ y=a\left(x-r_{1}\right)\left(x-r_{2}\right) \end{gathered}$
AXIS OF SYMMETRY (AOS)	(the AOS is the x value of the vertex) ***hhink opposite.	$x=\frac{-b}{2 a}$	Find the x-intercepts first, then the Axis of symmetry is in the middle, the "average of the x intercepts.
VERTEX	(h,k)	Plug AOS into the original function to solve for the y value of the vertex	Plug AOS into the original function to solve for the y value of the vertex
X-INTERCEPTS	Get into factored form and use the zero product property	Get into factored form and use the zero product property	Use the zero product property.
Y-INTERCEPT	*Plug in 0 for the x intercept or *get into standard form to find the c-value	y-intercept $=\mathrm{c}$-value	* Plug in Osfor the x's and find the y intercept or * Change equation into standard form and find the c-value
YOUR TURN	VERTEX FORM $y=(x+1)^{2}-9$	STANDARD FORM $y=x^{2}-6 x+5$	FACTORED FORM $y=2(x-1)(x-3)$
AXIS OF SYMMETRY			
VERTEX $\wedge^{(h, k)}$			
X-INTERCEPTS			

