\qquad
\qquad \# \qquad
B-ASSESSSMENT REVIEW: Module 1 Topic 2 - Similarity
$1^{1} \quad$ Triangle $F U N$ has vertices with coordinates $F(-2,4), U(-6,-4)$, and $N(6,0)$.
a. Dilate $\triangle F U N$ using the origin as the center of dilation and a scale factor of 0.5 to form $\Delta F^{\prime} U^{\prime} N^{\prime}$.

b. List the coordinates of the dilated image?
c. Explain the process you used to determine the coordinates of the dilated image.

2 BELOW IS A PICTURE OF THE PRE IMAGE TRIANGLE BOT AND ITS DILATED IMAGE, TRIANGLE B'O'T'. WITHOUT CALCULATING THE SCALE FACTOR,
a. EXPLAIN IF THE DILATION IS AN ENLARGEMENT OR A REDUCTION.
THE DILATION IS \qquad because \qquad _.
b. BASED ON YOUR ANSWER ABOVE, WHAT MUST
 BE TRUE ABOUT THE SCALE FACTOR?
A) THE SCALE FACTOR IS NEGATIVE
B) THE SCALE FACTOR IS BETWEEN -1 AND 1
C)THE SCALE FACTOR IS GREATER THAN 1
D) THE SCALE FACTOR IS POSITIVE
a. Graph trapezoid $(-7,1), B(-6,4), C(-4,4)$, and D (-5, 1).
b. Dilate Trapezoid ABCD about the origin with a scale factor of $\frac{3}{2}$. What are the coordinates of A^{\prime}, B', C' and D'?
c. On the graph, draw and label trapezoid A"B"C"D" after a translation of A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime}$ using the rule $(x, y) \rightarrow(x+3)$ Find the coordinates of A"B"C"D".

4	Rectangle QRST has coordinates $\mathrm{Q}(-3,7)$, $R(-3,11), S(4,11)$, and $T(4,7)$. a. Dilate the rectangle by a scale factor of 3 with a center of dilation at the origin. What are the coordinates of rectangle $Q^{\prime} \mathrm{R}^{\prime} \mathrm{S}^{\prime} \mathrm{T}$ '? Explain your reasoning. b. Is the dilation a reduction or an enlargement? Explain your reasoning.		Trapezoid FGHI has coordinates $\mathrm{F}(4,4)$, $\mathrm{G}(4,8), \mathrm{H}(12,8)$, and $\mathrm{I}(12,4)$. It is dilated by a scale factor of $1 / 4$ with a center of dilation at the origin. What are the coordinates of trapezoid F'G'H'I'?
6	Which sequence of transformations shows th below? Select all that apply.		milarity between the pair of figures shown lation with a scale factor of $1 / 2$. flection over the y-axis. ation with a scale factor of 2 . flection over the x -axis.
7	Name three (3) things you know about dilations? 1. 2. 3.	8	A triangle is dilated with a center of dilation at the origin. Point R is on the figure and R^{\prime} is the corresponding point on the image of the dilation. Point R is at $(6,4)$ and R^{\prime} is at $(-12,8)$. What is the scale factor?

2a.

b. The coordinates are $F^{\prime}(-1,2), U^{\prime}(-3,-2)$, and $N^{\prime}(3,0)$.
c. I multiplied the coordinates of the vertices of the original triangle by $\frac{1}{2}$ to get the coordinates of the vertices of the dilated image.
1.
2.
3. Trapezoid $A B C D$ was translated to the right 3 units, then dilated by a factor of 1.5 using the origin as the center of dilation.
4. Rectangle $Q^{\prime} R^{\prime} S^{\prime} T$ has coordinates $Q^{\prime}(-9,21), R^{\prime}(-9,33), S^{\prime}(12,33)$, and $T(12,21)$. I multiplied the coordinates of rectangle QRST by the scale factor, 3 .
b. It is an enlargement because the scale factor is greater than 1.
5. Trapezoid $F G^{\prime} H^{\prime} I^{\prime}$ has coordinates $F(1,1), G^{\prime}(1,2), H^{\prime}(3,2)$, and $I^{\prime}(3,1)$.
6. b and c. Trapezoid $A B C D$ was reflected over the y-axis, then dilated by a scale factor of 2 with the origin as the center of dilation.
7.
8. Scale factor 2
9. 1.5
10. b and d
11.

1a.

b. The coordinates are $B^{\prime}(-10,-2)$ and $C^{\prime}(-10,6)$.
c. The scale factor is greater than 1 , so the dilation is an enlargement. I can see from the graph that $\triangle A B^{\prime} C^{\prime}$ is larger than $\triangle A B C$.
d. The corresponding angles in the original triangle and its image are congruent. In these two triangles, $\angle A$ is an angle in both the original triangle and its image, and is congruent to itself.
e. The lengths of the corresponding sides of the original triangle and its image are proportional. For these two triangles, the length of each side of $\triangle A B^{\prime} C^{\prime}$ is twice the length of the corresponding side of $\triangle A B C$.
12.

2a.

b. The coordinates are $A^{\prime}(1.25,-1.25), B^{\prime}(2,-1.25)$ and $C^{\prime}(2,-0.75)$.
c. The scale factor is less than 1 , so the dilation is a reduction. I can see from the graph that $\triangle A^{\prime} B^{\prime} C^{\prime}$ is smaller than $\triangle A B C$.
d. The corresponding angles in the original triangle and its image are congruent.

